On isomorphism problem for coherent configurations associated with nonsolvable groups

Andrey Vasil'ev

The coherent configuration $\mathcal{X} = (\Omega, S)$ on a set Ω is said to be schurian, if the set S of its basis relations is precisely the set $\operatorname{Orb}_2(G, \Omega)$ of 2-orbits of some permutation group $G \leq \operatorname{Sym}(\Omega)$, that is the set of the orbits of the naturally induced action of G on $\Omega \times \Omega$. Clearly, in the case of a schurian configuration \mathcal{X} , this group G is a subgroup of the automorphism group $\operatorname{Aut}(\mathcal{X})$. So starting with G and trying to find $\operatorname{Aut}(\mathcal{X})$ or the set $\operatorname{Iso}(\mathcal{X}, \mathcal{X}')$ of all isomorphisms from \mathcal{X} to an arbitrary coherent configuration \mathcal{X}' , we have an advantage knowing some predetermined information about $\operatorname{Aut}(\mathcal{X})$. The same picture arises in the case of Cayley graphs (or Cayley schemes, which are coherent configurations as well). Indeed, if $\Gamma = \operatorname{Cay}(G, X)$ is the Cayley graph for a group G with a connection set X, then G is included as a regular subgroup in $\operatorname{Aut}(\Gamma)$. We are going to discuss some new results and techniques on the isomorphism problem for combinatorial objects associated with a group G in the described way, concentrating on the cases when G is a nonabelian simple or almost simple group.

SOBOLEV INSTITUTE OF MATHEMATICS AND NOVOSIBIRSK STATE UNIVERSITY, RUSSIA *E-mail address*: vasand@math.nsc.ru