Number of Sylow subgroups in finite groups

EVGENY VDOVIN

For a finite group G, denote by $\nu_p(G)$ the number of Sylow *p*-subgroups of G. It is a trivial exercise to check that for every subgroup H of G, the inequality $\nu_p(H) \leq \nu_p(G)$ holds. However $\nu_p(H)$ does not divide $\nu_p(G)$ in general. In 2003 G. Navarro proved that $\nu_p(H)$ divides $\nu_p(G)$ for every $H \leq G$ if G is *p*-solvable. We prove that $\nu_p(H)$ divides $\nu_p(G)$ for every $H \leq G$ if this property holds for every nonabelian composition factor of G. Thus we obtain a substantial generalization of Navarro's result and also give an alternative proof for Navarro's result.

We say that a group G satisfies $\mathbf{DivSyl}(p)$ if $\nu_p(H)$ divides $\nu_p(G)$ for every $H \leq G$.

Theorem. Let

$$1 = G_0 < G_1 < \ldots < G_n = G$$

be a refinement of a chief series of G. Assume that for each nonabelian factor G_i/G_{i-1} and for every p-subgroup P of $\operatorname{Aut}_G(G_i/G_{i-1})$, the group $P(G_i/G_{i-1})$ satisfies $\operatorname{DivSyl}(p)$. Then G satisfies $\operatorname{DivSyl}(p)$.

References

 G. Navarro, Number of Sylow subgroups in p-solvable groups, Proc. Amer. Math. Soc. 131 (2003), no. 10, 3019–3020.

SOBOLEV INSTITUTE OF MATHEMATICS, RUSSIA *E-mail address*: vdovin@math.nsc.ru