УДК 517

ОБ ω -ПРЕДЕЛЬНЫХ МНОЖЕСТВАХ ПРОСТЕЙШИХ КОСЫХ ПРОИЗВЕДЕНИЙ В ПЛОСКОСТИ

© Л. С. Ефремова

lef@uic.nnov.ru

Нижегородский государственный университет, Нижний Новгород

Рассмотрим косое произведение отображений интервала

$$F(x, y) = (f(x), g_x(y))$$
 для всех $(x, y) \in I$, (1)

где $I=I_1\times I_2$ — замкнутый прямоугольник на плоскости ($I_1,\ I_2$ — отрезки). Обозначим через $T^1(I)$ пространство всех C^1 -гладких отображений вида (1) с C^1 -нормой.

Изучению ω -предельных множеств цилиндрических каскадов (косых произведений над иррациональным поворотом окружности, заданных на цилиндре и имеющих отображения в слоях вида $g_x(y) = y + \phi(x)$, $y \in R^1$, $x \in S^1$, где R^1 — вещественная прямая, S^1 — окружность) посвящены работы А. Б. Крыгина, выполненные во второй половине 70-х годов XX века. Что касается косых произведений отображений интервала, то изучение различных аспектов топологической динамики систем такого рода начато в начале 90-х годов XX века и, в значительной степени, связано с достижениями одномерной динамики. Так, в статьях ряда авторов (Kolyada S., Snoha L.; Smital J., Lopez V. J.; Balibrea F., Garcia J. L., Munoz J. L.) установлен допустимый топологический тип ω -предельных множеств непрерывных отображений вида (1). В то же время представляет интерес получение условий, при выполнении которых косые произведения отображений интервала обладают ω -предельными множествами того или иного типа. В [1] указаны следующие условия, при выполнении которых каждая траектория отображения (1) сходится к некоторой периодической орбите.

Теорема 1 [1]. Пусть $F \in T^1(I)$ таково, что при каждом $x \in Per(f)$ отображение \widetilde{g}_x (где Per(f) — множество периодических точек факторотображения f, $\widetilde{g}_x = g_{f^{m-1}(x)} \circ \ldots \circ g_{f(x)} \circ g_x$, m — (наименьший) период x) имеет лишь притягивающие и отталкивающие периодические точки. Тогда следующие утверждения эквивалентны:

- (1.a) множество Per(F) периодических точек F замкнуто;
- (1.b) ω -предельное множество траектории произвольной точки из I есть периодическая орбита.

В условиях теоремы 1 периодические точки всех отображений \tilde{g}_x являются изолированными, и остается открытым вопрос об эквивалентности утверждений (1.a) и (1.b) для C^1 -гладких косых произведений отображений интервала, имеющих вертикальные слои с неизолированными и, следовательно, негиперболическими периодическими точками. В данной работе получены аналитические условия, при выполнении которых траектория произвольной точки фазового пространства отображения (1) сходится к периодической орбите.

Будем использовать l_1 -норму точки $z(x,y)\in I$ $||z||_1=|x|+|y|$. Для нормы матрицы Якоби $\frac{\partial F(x,y)}{\partial (x,y)}$ отображения $F\in T^1(I)$ в точке $z(x,y)\in I$, согласованной с l_1 -нормой, справедливо

$$\left\| \frac{\partial F(x,y)}{\partial (x,y)} \right\|_{1} = \max \left\{ |f'(x)| + \left| \frac{\partial}{\partial x} g_{x}(y) \right|, \left| \frac{\partial}{\partial y} g_{x}(y) \right| \right\}.$$

Прежде, чем ввести понятие регулярной (иррегулярной) точки, отметим, что множество (наименьших) периодов периодических точек C^1 -гладкого отображения вида (1) с замкнутым множеством периодических точек ограничено.

Определение. Пусть $F \in T^1(I)$, Per(F) — замкнутое множество, а $x^0 \in Per(f)$. Точку $x_0 \in W^s(x^0, f^M)$ (где $W^s(x^0, f^M)$ — устойчивое многообразие точки x^0 относительно отображения f^M , M — наибольший элемент множества (наименьших) периодов периодических точек F) назовем регулярной, если либо

- (2.1) $x_0 \in \{f^{-Mn}\}_{n\geq 0}$, либо (2.2) $x_0 \in W^s(x^0, f^M) \setminus \{f^{-Mn}(x^0)\}_{n\geq 0}$, и при этом выполнено одно из следующих двух **у**словий:
- (2.2a) слой $\{x^0\} \times I_2$ не содержит невырожденного отрезка, состоящего из неподвижных точек отображения F^M ;
- (2.2b) слой $\{x^0\} \times I_2$ содержит невырожденный отрезок, состоящий из неподвижных точек отображения F^M , причем существует натуральное число n_0 такое, что для любого $n \ge n_0$ выполнено неравенство $B_n = \sup_{y \in I_2} \left\| \frac{\partial F^M(x_{Mn}, y)}{\partial (x, y)} \right\|_1 \le 1$.

Точку $x_0 \in W^s(x^0, f^M)$, не являющуюся регулярной, будем называть *иррегулярной*.

Обозначим через R_f (I_f) множество всех регулярных (иррегулярных) точек. Обратим внимание на то, что R_f (I_f) состоит из целых f^M -траекторий и является f^M -инвариантным множеством.

Следующая теорема обобщает сформулированную выше теорему 1.

Теорема А. Пусть $F \in T^1(I)$, и $I_f = \emptyset$. Тогда утверждения (1.a) и (1.b) эквивалентны. Рассмотрим случай непустого множества I_f .

Теорема В. Пусть $F \in T^1(I)$, и для любой точки $x_0 \in I_f$ выполнено следующее условие: ряд $\sum_{n=1}^{+\infty} (B_n - 1)$ сходится. Тогда утверждения (1.a) и (1.b) эквивалентны.

В работе построены примеры отображений, удовлетворяющих условиям теорем А и В.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ефремова Л. С. О неблуждающем множестве и центре треугольных отображений с замкнутым множеством периодических точек в базе // Динамич. системы и нелинейные явления. Киев: Ин-т математики АН Украины. 1990. С. 15–25.
- 2. Ефремова Л. С. Об одномерном аттракторе простейшего косого произведения отображений интервала // Мат. заметки (в печати).