УДК 517.9

UNLOCAL STABLE INVARIANT MANIFOLDS FOR THE GINZBURG – LANDAU EQUATION

© A. V. Fursikov

fursikov@mtu-net.ru

Moscow State University, Moscow, Russia

One of possible approaches to solve (local) stabilization problem for nonlinear evolution PDE in a neighborhood of its steady-state solution \hat{v} is based on using stable invariant manifold defined in this neighborhood of \hat{v} [1]. In order to extend stabilization theory on the case when initial condition of stabilized equation is far from \hat{v} one has to be able to construct stable invariant manifold "in whole", i.e. outside small neighborhood of \hat{v} .

In a bounded domain $\Omega \subset \mathbb{R}^3$ the Ginzburg – Landau equation is considered:

$$\partial_t v(t,x) - \nu \Delta v - v + v^3 = 0, \quad x \in \Omega, \ t > 0 \tag{1}$$

with zero Dirichlet condition on $\partial\Omega$, where parameter $\nu > 0$ is small enough. Then (1) has several steady-state solutions. Let \hat{v} be one of them. Let $\{e_j, \lambda_j\}, \lambda_1 \leq \ldots \lambda_N < 0 < \lambda_{N+1} \leq \ldots \lambda_k \to \infty$ as $k \to \infty$ be eigenfunctions and eigenvalues of linearization on \hat{v} of space part of (1). We decompose the phase space $V = H^2(\Omega) \cap H_0^1(\Omega)$ of (1) on $V_+ \oplus V_-$ where $V_+ = [e_1, \ldots e_N], V_- = [e_{N+1}, \ldots]$. The set $M_- \subset V$ contained \hat{v} is called stable invariant manifold if for each $v_0 \in M_-$ the solution $v(t, \cdot, v_0)$ of (1) with initial condition v_0 belongs to M_- for every t > 0, and $||v(t, \cdot, v_0) - \hat{v}||_V \leq \exp(-rt)$ as $t \to \infty$ for certain r > 0. Moreover

$$M_{-} = \{ \hat{v} + v_{-} + F(v_{-}), v_{-} \in \mathcal{O}(V_{-}) \}$$
(2)

where $\mathcal{O}(V_{-})$ is a neighborhood of the origin in V_{-} , and $F : \mathcal{O}(V_{-}) \to V_{+}$ is a map satisfying $||F(v_{-})||/||v_{-}|| \to 0$ as $||v_{-}|| \to 0$.

Existence theorem for invariant manifold M_{-} is well know when the neighborhood $\mathcal{O}(V_{-})$ from definition (2) belongs to a ball $B(V_{-}, r) = \{v_{-} \in V_{-} : ||v_{-}||_{V_{-}} \leq r\}$ of small enough radius r. We prove existence of M_{-} with neighborhood $\mathcal{O}(V_{-})$ from (2) which is not contained to the ball $B(V_{-}, r)$ with arbitrary big r

Introduce the following subspace V_{-}^{k} of $V_{-}: V_{-}^{k} = [e_{k}, e_{k+1}, \ldots]$ with k > N, and in the space V_{-} define the following "cruciform" set: $CR_{r,\rho}(k) = B(V_{-}, r) \cup B(V_{-}^{k}, \rho)$.

Theorem. For a certain r > 0 and for arbitrary $\rho > 0$ one can find k > N such that there exists a neighborhood $\mathcal{O}(V_{-})$ satisfying conditions: i) $CR_{r,\rho}(k) \subset \mathcal{O}(V_{-})$, ii) There exists a stable invariant manifold (2) with this $\mathcal{O}(V_{-})$.

The proof is based on the theory of analytical stable invariant manifolds. See its local version in [2]

There are examples of ODE when a stable invariant manifold is defined only locally. In the case of parabolic PDE and Navier – Stokes system stable invariant manifolds are always infinite dimensional. That is the reason why they can be extended up to unbounded set.

REFERENCES

- Fursikov A. V. Stabilizability of two-dimensional Navier Stokes equations with help of boundary feedback control // J. of Math. Fluid Mech. 2001. V. 3. P. 259–301.
- 2. Fursikov A. V. Analyticity of stable invariant manifolds of 1D-semilinear parabolic equations // Proc. of Summer Research Conf. "Control methods of PDE-dynamical systems", AMS Contemporary Math. series. Providence, 2007 (to appear).