ОБ ОДНОЙ СИСТЕМЕ УРАВНЕНИЙ СОСТАВНОГО ТИПА

© Ш. Б. Халилов

shavkat58@mail.ru

Институт математики АН РТ, Душанбе, Таджикистан

Пусть $x=(x_1,x_2,x_3)\in R^n$. Рассмотрим в полупространстве $R_+^4=\{(t,x)\in R^4:x\in R^3,0< t<\infty\}$ относительно вектор-функции U=(u,v,w) систему дифференциальных уравнений

 $-U_{tt} - \Delta U + \lambda \operatorname{grad} \operatorname{div} U + \mu \frac{\partial}{\partial t} (U_t + \operatorname{rot} U) = 0, \tag{1}$

которая зависит от вещественных параметров λ и μ . Эта система при $(\lambda-1)(\mu-1)>0$ является эллиптической по Петровскому. При $\lambda<1$ и $\mu<1$ она является сильно эллиптической, при $\lambda>1$ и $\mu>1$ не является сильно эллиптической, а при $\lambda=\mu=2$ превращается в систему В. И. Шевченко [1], представляющей собой пример эллиптической системы трех уравнений в четырехмерном пространстве, для которой нарушается нетеровость задачи Дирихле. Когда $(\lambda-1)(\mu-1)\leq 0$ система (1) перестанет быть эллиптической. В этом случае было доказано в [2], что задача Дирихле для этой системы в полупространстве R_+^4 при любых значениях $\lambda>1$ и $\mu>1$ не является нетеровой, т. е. система (1) является сильно связанной [3].

При $\lambda = \mu = 1$ характеристический определитель системы (1) обращается в нуль, т. е. тип системы вырождается, и в этом случае нами было доказано, что задача Дирихле является переопределенной и для корректности поставленной задачи на границе полупространства R_+^4 достаточно задавать значение одной из компонент искомой вектор-функции U(t,x).

Настоящая работа посвящена определению корректно поставленной задачи в случаях $(\lambda - 1)(\mu - 1) \le 0$, когда хотя бы один из параметров λ или μ не равен 1.

Пусть $\mu \neq 1$ и $\lambda = 1$. Тогда $(\lambda - 1)(\mu - 1) = 0$ и характеристический определитель системы имеет вид:

$$\sigma(\tau,\xi) = (\mu - 1)\tau^2 [\tau^2 + |\xi|^2] [(\mu - 1)^2 \tau^2 + |\xi|^2], \tag{2}$$

где $|\xi|^2=\xi_1^2+\xi_2^2+\xi_3^2$. Здесь при $\,\tau=0\,$ $\,\sigma(\tau,\xi)=0\,$ и система (1) при $\,t=0\,$ вырождается в систему

$$-\triangle U + \operatorname{grad} \operatorname{div} U = 0.$$

характеристический определитель которой тождественно равен нулю. Она эквивалентна двум системам уравнений первого порядка

$$U_t + \operatorname{rot} U = \Phi$$
, $(\mu - 1)\Phi_t + \operatorname{rot} \Phi = 0$,

где $\Phi = (\varphi_1, \varphi_2, \varphi_3)$. Имеет место следующее утверждение.

Теорема 1. Если $\mu \neq 1$ и $\lambda = 1$, то регулярные решения системы (1) в R_+^4 всегда существуют. Если

$$v(0,x) = f_1(x), \qquad w(0,x) = f_2(x),$$

$$v_t(0,x) = g_1(x), \qquad w_t(0,x) = g_2(x),$$

где $f_1, f_2, g_1, g_2 \in C^3(\mathbb{R}^3)$ и на бесконечности $f_i(x) = O(|x|^{-2})$, $g_i(x) = O(|x|^{-1})$, i = 1, 2, то это решение единственно.

При $\mu=1$ и $\lambda\neq 1$ характеристический определитель системы принимает вид

$$\sigma(\tau, \xi) = (\lambda - 1)|\xi|^4 (\tau^2 + |\xi|^2).$$

В этом случае система является системой составного типа и для нее справедливо следующее утверждение.

Теорема 2. Если $\mu = 1$ и $\lambda \neq 1$, то при $\lambda \neq 0$ регулярные решения системы (1) не существуют, а если $\lambda = 0$ необходимо на границе полупространства R_+^4 задавать одну из компонент искомой вектор-функций U(t,x).

СПИСОК ЛИТЕРАТУРЫ

- 1. Шевченко В. И. // Докл. АН СССР. 1973. Т. 210, № 6. С. 1300–1302
- 2. Янушаускас А. И. Аналитическая теория эллиптических уравнений. Новосибирск: Наука, 1979. 192 с.
- 3. Бицадзе А. В. Некоторые классы уравнений в частных производных. М.: Наука, 1981. 448 с.
- 4. Халилов Ш. Б. // Докл. АН РТ. 2006. Т. 49, № 4. С. 311–315.