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The presentation is devoted to discussing a new class of solutions of the one-dimensional gas
dynamics equations
Uur + uug + 7P, = 0,
T +uty — U = 0, (1)
pr + upy + A(T,p)uy = 0.

Here p is the density, u is the velocity, p is the pressure, and c is the sound speed (¢? = 74). For
a polytropic gas A = yp, ~ > 1. The new class of solutions is obtained by applying sequentially
the method differential of constraints and group analysis.

The idea of the method of differential constraints was proposed by N. N. Yanenko [1] as a
generalization of solutions with degenerated hodograph. This class of solutions is characterized by
finite relations between dependent functions. Well-known classes of such solutions are simple and
double waves. A survey of the method can be found in [2,3]. Applications of the method of differential
constraints to the one-dimensional gas dynamics equations written in Lagrangian coordinates are
given in [4, 5|, and in the Eulerian coordinates in [6].

Another approach for generalizing the set of solutions with a degenerated hodograph is given
by L. V. Ovsiannikov |7, 8]. He extended a set of invariant solutions by introducing the notion of a
partially invariant solution. Invariant and partially invariant solutions of the gas dynamics equations
were studied in program PODMODELI [9]. Review of the results of this program can be found in
[10].

The problem of relations between partially invariant solutions and solutions obtained by the
method of differential constraints was repeatedly set up by L. V. Ovsiannikov and N. N. Yanenko.
In the presentation it is given answer to this problem for a particular class of solutions of the gas
dynamics equations.

Let us consider solutions of (1) which are defined by the differential constraints

Te =@ (T,D), Dz =" (T,p), Uz = @"“(T,D). (2)

The functions ¢"(7,p), @P(7,p), ¢“(1,p) have to satisfy the equations

P (Fep =) T epe? + e =0,
TP~ or) — TPl T r) = ot E 4 Py, (3)

T (Pp 2 — @) — yp(PPoy + 0Tel) = (v + )Pt

Notice that if A = 7,p; — 7ipr = —7p"(¢P + L") # 0, then from the relations 7 = 7(t, )
and p = p(t,x) one can find ¢t = ¢(7,p), x = x(7,p). Substituting them into the values for the
derivatives 7,(t,x), pz(t,x), uy(t,x), one finds that all solutions of the gas dynamics equations
with A # 0 can be described by the differential constraints (2). If the functions ¢"(7,p), ¢P(7,p),
©"(r,p) are found, then a solution of the gas dynamics equations (1) is restituted by quadratures.
Thus, for finding exact solutions of the gas dynamics equations one can use solutions of system (3).
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Equations (2) admit the Lie algebra with the generators

X1 =707 +p0py, Xo =@ 0pr + @POur + @“Opu,
X3 = 7'87- — pﬁp + 907-8307' — gop&pp.

The generators X3 and X3 are inherited by the operators admitted by the one-dimensional gas
dynamics equations of a polytropic gas (1): Y; = t0; + ©0,, Y2 = 70; — p0p, respectively. The
generator X, produces a new set of symmetries: it is not admitted by a system of the gas dynamics
equations (1).

The algebra {Xi, X2, X3} is Abelian. In the presentation all classes of invariant and partially
invariant solutions related with the subalgebra X; 4 ko Xo + k3 X3 are considered. Here ky and ks
are constant.

It is interesting to note that among the set of invariant solutions there is one class of solutions
which has a functional arbitrariness. It is interesting because usually for two independent variables
an invariant solution with respect to a one-parameter Lie group is reduced to a system of ordinary
differential equations which has only constant arbitrariness.

For partially invariant solutions it is shown that all unreduceable partially invariant solutions
coincide with solutions characterized by two differential constraints of first-order of the gas dynamics
equations [6]. Thus, this gives a solution of the problem which was set up by N. N. Yanenko and
L. V. Ovsiannikov.
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