УДК 517

ОБРАТНЫЕ ЗАДАЧИ ДЛЯ СИСТЕМЫ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ ЭЛЕКТРОМАГНИТОУПРУГОСТИ В ЛИНЕЙНОМ ПРИБЛИЖЕНИИ

© И. З. Меражов

maths@sibupk.nsk.su

Институт вычислительной математики и математической геофизики, Сибирский университет потребительской кооперации, Новосибирск

Рассмотрена полная система дифференциальных уравнений электромагнитоупругости состоящая из следующих уравнений:

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \sum_{j=1}^3 \frac{\partial T_{ij}}{\partial x_j}, \quad i = 1, 2, 3;$$
(1)

$$\operatorname{rot} H = \frac{\partial D}{\partial t}, \quad \operatorname{rot} E = -\mu \frac{\partial H}{\partial t},$$
 (2)

Здесь $x=(x_1,x_2,x_3)\in \mathbf{R}^3$, $\rho=\rho(x)$ — плотность неоднородной среды, $\rho(x)>0$, $u=(u_1,u_2,u_3)$ — вектор смещений с компонентами $u_i=u_i(x,t)$, i=1,2,3, $E=(E_1,E_2,E_3)$ и $H=(H_1,H_2,H_3)$ — вектора электрической и магнитной напряженности с компонентами $E_i=E_i(x,t)$, $H_i=H_i(x,t)$, i=1,2,3, $D=(D_1,D_2,D_3)$ — вектор электрической напряженности с компонентами $D_i=D_i(x,t)$, i=1,2,3.

Для тензоров напряжений $T_{ij}(x,t)$ и деформаций $S_{kl}(x,t)$ и компонент электрической индукции $D_j(x,t)$ имеют место представления:

$$T_{ij} = \sum_{k,l=1}^{3} c_{ijkl} S_{kl} - \sum_{k=1}^{3} e_{kij} E_k, \quad i = 1, 2, 3, \quad j = 1, 2, 3,$$
(3)

$$S_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right), \quad k = 1, 2, 3, \quad l = 1, 2, 3,$$

$$(4)$$

$$D_{j} = \sum_{k=1}^{3} \varepsilon_{jk} E_{k} + \sum_{k,l=1}^{3} e_{jkl} S_{kl}, \quad j = 1, 2, 3,$$
(5)

 $c_{ijkl} = c_{ijkl}(x)$ — модули упругости, $e_{kij} = e_{kij}(x)$ — пьезоэлектрические модули, $\varepsilon_{ij} = \varepsilon_{ij}(x)$ — диэлектрические модули, $\mu = \mu(x)$ — магнитная проницаемость.

Систему (1), (2) будем рассматривать совместно с условиями

$$u|_{t<0} = 0, \quad E|_{t<0} = 0, \quad H|_{t<0} = 0,$$
 (6)

Система (1), (2) описывает распространение связанных электроупругих волн. Связь упругих и электрических процессов определяется пьезоэлектрическими модулями среды. Так как тензоры c_{ijkl} , e_{kij} , ε_{ij} удовлетворяют следующим условиям симметричности

$$c_{ijkl} = c_{jikl} = c_{ijlk} = c_{klij}, \quad e_{kij} = e_{kji}, \quad \varepsilon_{ij} = \varepsilon_{ji},$$

удобно ввести новые обозначения, т. е. пару индексов (ij), относительно которых тензоры симметричны, заменим одним индексом p, принимающим значения от 1 до 6. Упорядочения здесь следующее:

$$(11) \to 1$$
, $(22) \to 2$, $(33) \to 3$, $(23) = (32) \to 4$, $(13) = (31) \to 5$,
 $(12) = (21) \to 6$, $c_{ijkl} = c_{pq}$, $e_{kij} = e_{kp}$.

Набор характеристик электромагнитоупругой среды дается в литературе в виде матрицы

$$\begin{pmatrix} c_{\alpha\beta}(6\times6) & e_{\alpha k}(6\times3) \\ e_{k\alpha}(3\times6) & \varepsilon_{ij}(3\times3) \end{pmatrix}.$$

В данной работе рассмотрены анизотропные среды кубической, тетрогональной и гексогональной структуры.

Показано, что систему электромагнитоупругости (1), (2) можно записать в виде t-гиперболической, симметрической по Фридрихсу системы уравнений первого порядка, т. е. в виде

$$A_0 \frac{\partial}{\partial t} U + \sum_{j=1}^{3} A_j \frac{\partial}{\partial x_j} U + QU = 0.$$

В области $(x_1, x_2) \in \mathbb{R}^2, x_3 \in [0, H]$ рассмотрена симметрическая t-гиперболическая по Фридрихсу система дифференциальных уравнений первого порядка со следующим начальным условием и граничными условиями:

$$U|_{t<0} = 0,$$
 $G_1 U|_{x_3=0} = g_1(x_1, x_2, t),$ $G_2 U|_{x_3=H} = g_2(x_1, x_2, t).$

Предполагается, что в данной области функции входящие в $A_j(x)$, j=0,1,2,3, представлены в виде постоянной и малой добавки к ней, зависящей от всех трех переменных. Следовательно матрицы тоже представится в виде суммы

$$A_j = B_j^0 + B_j^1(x), \qquad j = 0, 1, 2, 3,$$

и решение будем искать в виде

$$U(x,t) = U_0(x,t) + U_1(x,t),$$

где $U_0(x,t)$ — решение задачи с постоянными коэффициентами, нулевой правой частью и неоднородными граничными условиями, а $U_1(x,t)$ — решение задачи с постоянными коэффициентами, однородными граничными условиями и правую часть входить решение $U_0(x,t)$.

Прямая линеаризованная задача заключается в нахождении $U(x,t) = U_0(x,t) + U_1(x,t)$, а обратная задача — в нахождении неизвестных коэффициентов входящие в матрицу $B_i^1(x)$.

Основные результаты работы составляют теоремы существования и единственности решения прямой и обратной многомерных линеаризованных задач для системы дифференциальных уравнений электромагнитоупругости, а также получены оценки устойчивости решения многомерной линеаризованной обратной задачи.

Работа поддержана грантом РФФИ № 03-05-64081.