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A starting point of this research is an analogue between universal coverings of the Lorentz and de
Sitter groups, which was first established by Takahashi [1] (see also the work of Strém [2]). Namely,
the universal covering of SOg(1,4) is Spin, (1,4) ~ Sp(1,1) and the spinor group Spin, (1,4)
is described in terms of 2 x 2 quaternionic matrices. Spherical functions on the group SOq(1,4)
are understood as functions of representations of the class 1 realized on the homogeneous spaces of
SOp(1,4) . A list of homogeneous spaces of SOy(1,4), including symmetric Riemannian and non-
Riemannian spaces, consists of the group manifold &19 of SOq(1,4), two-dimensional quaternion
sphere S, four-dimensional hyperboloid H* ~ SOg(1,4)/SO(4), three-dimensional real sphere
S3 ~ SO(4)/SO(3) and a two-dimensional real sphere S? ~ SO(3)/SO(2).

Using the universal covering Spin_ (1,4) ~ Sp(1,1) of SOy(1,4), we can write a first Casimir
operator F' on the group manifold &g,
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Here, ¥, ¢, 0, ¢, s, x, 7, €, €, w are Euler angles of Sp(1,1), 07 =0+¢—ir, p? = p—ie+js,
Y1 =1 —ie —iw + ky are quaternion Euler angles. The second Casimir operator W of SOq(1,4)
is equal to zero on the representations of the class 1.

Matrix elements t9,,.(q) = MY, (p?,09,17) of irreducible representations of the group SOp(1,4)
are eigenfunctions of the operator (1):
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where
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since ¢9 = ¢! —iw . Here, M7, (q) are general matrix elements of the representations of SOg(1,4),
and 39, (cos09) are hyperspherical functions. Substituting the functions (3) into (2) and taking
into account the operator (1), after substitution z = cosf? we arrive at the following differential
equation:
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The latter equation has three singular points —1, +1, oo . It is a Fuchsian equation. A particular
solution of (4) can be expressed via the hypergeometric function
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An explicit form of the functions 37,,(cos#?) can be derived via the multiple hypergeometric series.
Namely, using an addition theorem for generalized spherical functions [3], we obtain
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for m >t, t > k, k > n. In addition to (6) there exist seven functions 37, (cos6?) for m > ¢, k >
t,k>n; t>m, k>t, n>k;t>m,t>k,n>k; t>m, k>t,k>n; t>m, t>k, k>n;
m>t,t>kn>k; m>t, k>t, n>k.

Hyperspherical functions for other homogeneous spaces of SOg(1,4) are particular cases of the
functions (6). For example, on the quaternion 2-sphere we have associated functions 37(cos 7).
Further, the function (6) is reduced to the Jacobi function $9,,(cosh7) on the hyperboloid H* ~
S0p(1,4)/SO(4) and to a generalized spherical function PJ, (cos#) on the real 3-sphere. Finally,
on the surface of the real 2-sphere S% ~ SO(3)/S0O(2) we have from (6) the usual spherical functions
Y (cos @) .
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