УДК 517.925:62.50

ЭКВИВАЛЕНТНОСТЬ И УСТОЙЧИВОСТЬ ВЫРОЖДЕННЫХ СИСТЕМ ПРОГРАММНОГО ДВИЖЕНИЯ

© С. С. Жуматов

anar@math.kz

Институт математики ЦФМИ МОН РК, Алматы, Казахстан

Вырожденная система управления приводится к эквивалентной и канонической формам. С помощью построения функции Ляпунова устанавливается достаточные условия абсолютной устойчивости программного многообразия относительно вектор-функции ω .

Одним из важных классов неявных систем являются модели вида

$$H(t, x(t))\dot{x}(t) = F(t, x), \quad H \in \mathbb{R}^{s \times n}, \quad x \in \mathbb{R}^n, \quad F \in \mathbb{R}^s, \quad t \in I = (\alpha, \beta).$$
 (1)

Такие системы линейных уравнений, не разрешенные относительно старшей производной или алгебро-дифференциальные системы, важные для приложений, как экономические системы управления, теория электрических цепей и т. д, изучались многими авторами. Обзор этих работ приведен в [1]. В этих работ доказаны существование и единственность решений, исследованы приводимость систем с переменными матрицами к системам с постоянными матрицами, вырожденные системы приведены к различным каноническим видам, рассматривались вопросы их эквивалентности системам с постоянными и кусочно-постоянными коэффициентами, построены алгоритмы решения вырожденных линейных систем. В настоящей работе исследуется задача установления эквивалентности и устойчивости вырожденных систем. Полученные результаты являются распространением некоторых результатов полученных в [2, 3], на нелинейные системы. К системе типа (1) приводятся также задача построения систем по заданному многообразию. Пусть дифференциальное уравнение [4]

$$\dot{x} = f(t, x) \tag{2}$$

описывает динамические процессы систем автоматического управления, где $x \in R^n$, $f = (t,x) \in R^n$ — вектор-функция состояния системы управления, обеспечивающая существование и единственность решений уравнений (2) на интервале $t \in I = (\alpha,\beta)$ и обладающая n-s-мерным гладким интегральным многообразием $\Omega(t)$, определяемым векторным уравнением $\omega(t,x) = 0$ $\omega \in R^s, s \le n$. В силу того, что многообразие $\Omega(t)$ является интегральным для системы (2) имеет место

$$\dot{\omega} = \frac{\partial \omega}{\partial t} + \frac{\partial \omega}{\partial x} f(t, x) = F(t, x, \omega), \tag{3}$$

где $F(t, x, 0) \equiv 0$ — функция Еругина [5].

Рассмотрим неявную дифференциальную систему, возникающей при построении систем по заданному многообразию $\Omega(t)$:

$$H(t, x(t))\dot{x}(t) = f(t, x), \quad H \in \mathbb{R}^{s \times n}, \quad x \in \mathbb{R}^n, \quad \omega \in \mathbb{R}^s, \ s \le n, \quad t \in I = (\alpha, \beta).$$
 (4)

где $H(t,x(t))=\partial\omega/\partial x$, $f(t,x)=F(t,\omega(t,x))-\partial\omega/\partial t$, α,β — конечные или бесконечные числа, $F(t,0)\equiv 0$ — функция Еругина, а многообразие $\Omega(t)$ задано в линейном виде $\omega(t,x)\equiv H_1(t)x=0$, где $H_1(t)\in R^{s\times n}$ — заданная непрерывная матрица. Нашей целью является установление достаточных условий устойчивости программного многообразия вырожденных систем. Рассмотрим случай, когда характеристическое уравнение матрицы H(t) при s=n имеет r нулевых корней.

Выбирая функцию Еругина линейной относительно вектор-функции $\omega F(t, x, \omega) = -A_2(t)\omega$ и принимая во внимание линейность заданного многообразия, систему (4) преобразуем к виду

$$H(t)\dot{x} = -A(t)x - q(t),\tag{5}$$

где $H(t) \in R^{s \times s}$, $A(t) = A_2(t)H_1(t)$, $q(t) = \partial \omega/\partial t$.

Введём оператор L(t) = -A(t) - H(t)d/dt.

Теорема 1. Пусть A(t), $H(t) \in C^{2m}(\alpha,\beta)$, rank H(t) = s - r и матрица H(t) имеет в интервале (α,β) полный жорданов набор относительно оператора L(t), который складывается c r клеток порядка l_1,\ldots,l_r при $\max_i l_i = m$. Тогда существуют неособые при всех

 $t \in (\alpha, \beta)$ $(s \times s)$ -матрицы $\widetilde{M}(t), G_1(t) \in C^1(\alpha, \beta)$ такие, что умножением на $\widetilde{M}(t)$ и заменой $x = G_1(t)y$ система (5) приводится к центральной канонической форме

где $l=l_1+\cdots+l_r,\ J={\rm diag}(J_1,\ldots,J_r),\ J_j$ — жордановые клетки порядка $l_j\ j=\overline{1,r}$. Вместе с системой (5) рассмотрим систему аналогичного вида

$$P(t)\dot{y} + Q(t)y = 0, \quad t \in I, \tag{7}$$

где P и Q — абсолютно непрерывные $s \times s$ матрицы, ограниченные на промежутке I , а детерминант матрицы P равен нулю для всех $t \in I$.

Теорема 2. Системы (5) и (7) асимптотически эквивалентны тогда и только тогда, когда существует такая матрица Ляпунова L, что для любой фундаментальной матрицы Y решений системы (7) существует фундаментальная матрица X решений системы (5), для которой имеет место представление X = LY.

Теперь рассмотрим вопрос о построении устойчивых систем управления по заданноому программному многообразию

$$\dot{x} = f(t, x) - B(t)\xi, \quad \dot{\xi} = \varphi(\sigma), \quad \sigma = P^T \omega,$$
 (8)

где $B(t) \in R^{s \times k}$ — непрерывная, $P \in R^{s \times k}$ — постоянная матрицы, φ , $\sigma \in R^k$ — векторы, а нелинейная вектор-функция $\varphi(\sigma)$ удовлетворяет локальным условиям квадратичной связи и дифференцируема по σ . Тогда с учетом, что многообразие $\Omega(t)$ является интегральным и для системы (8), система (5) будет иметь вид

$$H(t)\dot{x} = -A_2(t)\omega - q(t) - H(t)B(t)\xi, \quad \dot{\xi} = \varphi(\sigma), \quad \sigma = P^T\omega, \tag{9}$$

Система (9) приводится к центральной канонической форме и путем построения для нее функции Ляпунова получено достаточное условие абсолютной устойчивости относительно вектор-функции ω .

СПИСОК ЛИТЕРАТУРЫ

- 1. Жуматов С. С. Центральная каноническая форма и устойчивость вырожденных систем управления // Математический журнал. Алматы. 2003. Т. 3, № 3. С. 48–54.
- Яковец В. П. Деякі властивості вироджених лінійних систем // Укр. мат. журнал. Киев. 1997. Т. 49, № 9. С. 1278–1296.
- 3. *Мазаник С. А.* О линейных дифференциальных системах, эквивалентных относительно обобщенного преобразования Ляпунова // Дифференц. уравнения. 1986. Т. 22, № 9. С. 1619- 1622.
- 4. *Майгарие Б. Ж.* Устойчивость и качество процессов нелинейных систем автоматического управления. Алма-Ата, 1981. 316 с.
- 5. *Еругин Н. П.* Построение всего множества систем дифференциальных уравнений, имеющих заданную интегральную кривую // ПММ. 1952. Т. 10, в. 16. С. 659–670.