УДК 517.946

О ЗАДАЧЕ КОШИ ДЛЯ ЭЛЛИПТИЧЕСКИХ СИСТЕМ ПЕРВОГО ПОРЯДКА

© Д. А. Жураев*, И. Исломов

* davron-0112@rambler.ru

Самаркандский государственный университет, Самарканд, Узбекистан

В работе изучается интегральная формула для систем эллиптического типа первого порядка с постоянными коэффициентами факторизирующий оператором Гельмгольца в ограниченной области. Для этого вводится следующее обозначение.

Пусть $x=(x_1,\ x_2)$ и $y=(y_1,y_2)$ точки 2-х мерного вещественного евклидова пространства R^2 и $x^T=(_{1,2})^T$ — вектор-столбец, транспонированный вектор к x,

$$r = |x - y|, \quad \alpha = |x_1 - y_1|, \quad \omega = i\sqrt{u^2 + \alpha^2} + y_2, \quad u \ge 0, \quad \omega_0 = i\alpha + y_2,$$
$$\frac{\partial}{\partial x} = \left(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}\right)^T, \quad u(x) = (u_1(x), u_2(x))^T, \quad u^0 = (1, 1) \in \mathbb{R}^2,$$

$$E(x) = \left\| egin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}
ight\| -$$
 диагональная матрица.

Через $A_{2\times 2}(x)$ обозначим класс матриц $D(x^T)$ с элементами, состоящими из линейных функций с постоянными коэффициентами из C, для которых выполняется условие:

$$D^*(x^T)D(x^T) = E((|x|^2 - \lambda^2)u^0),$$

где $D^*(x^T)$ — эрмитова сопряженная матрица $D(x^T)$, λ — постоянное.

Обозначим через G односвязную область R^2 , граница которой состоит из отрезка [a,b] и некоторой гладкой кривой S , лежащей на полуплоскости $y_2>0$.

Рассмотрим в G систему дифференциальных уравнений

$$D\left(\frac{\partial}{\partial x}\right)u(x) = 0,\tag{1}$$

где характеристическая матрица $D(x^T) \in A_{2\times 2}(x)$. Обозначим через P(G) класс векторфункций, имеющих непрерывную производную первого порядка в G, удовлетворяющих системе (1) и непрерывных в $\overline{G} = G \cup \partial G$.

Пусть $u(x) \in P(G)$ и задано значения вектор-функции $u(y)/_s = f(x)$. Требуется восстановление значения вектор-функции в G, исходя из значений f(x). Для решения этой задачи верна следующая теорема:

Теорема. Пусть $u(x) \in P(G)$ и удовлетворяет граничному условию $|u(y)| \leqslant 1$ на [a,b], если

$$u_{\sigma}(x) = \int_{\partial G} N_{\sigma}(y, x)u(y)ds_y, \quad x \in G,$$
(2)

где (см. [1])

$$N_{\sigma}(y,x) = \left(E\left(\Phi_{\sigma}(y,x)u^{0}\right)D^{*}\left(\frac{\partial}{\partial x}\right) \right)D(t)^{T}, \quad x \in G,$$

 $\Phi_{\sigma}(y,x)$ — функция Карлемана для уравнения Гельмгольца на области G (см. [2]) для решения задача Коши, $t=(t_1,\,t_2)$ — единичная внешняя нормаль, проведенная в точке y на ∂G , тогда верно следующее неравенство:

$$|u(y) - u_{\sigma}(y)| \leq c(x)e^{\sigma x_2}, \quad x \in G.$$

СПИСОК ЛИТЕРАТУРЫ

- 1. *Тарханов Н. Н.* Некоторые вопросы многомерного комплексного анализа // Ин-т физики АН СССР, Красноярск. 1980. С. 147–160.
- 2. *Ярмухамедов Ш. Я.* О продолжении решения уравнения Гельмгольца // Докл. АН. 1997. Т. 357, № 3. С. 320–323.