
Международная конференция "Дифференциальные уравнения, теория функций и приложения", 2007, с. 654–655

УДК 519.632.4

ESTIMATING THE DERIVATIVES OF A SOLUTION TO THE
ELLIPTIC BVP BY STATISTICAL MODELLING METHOD

c© Alexander V. Burmistrov

burm@osmf.sscc.ru

Institute of Computational Mathematics and Mathematical Geophysics SB RAS, Novosibirsk, Russia

Differential problem. Let us consider the problem of estimating the solution and the solution
gradient at an arbitrary point r for the following BVP:

∆u(r)− c(r)u(r) +
(
v(r),∇u(r)

)
= −g(r), r ∈ Ω ⊂ R3 (1)

u(y) = ψ1(y), y ∈ Γ1, (∇u(y), γ(y)) + α(y)u(y) = ψ2(y), y ∈ Γ2, Γ1

⋃
Γ2 = ∂Ω (2)

Suppose that there exists the unique and smooth enough solution u to the problem (1)–(2). We
suggest to reduce the initial differential problem (1) to the integral equation of the second kind
U = KU + G for unknown function

U(w) ≡ U(r, j) =

{
u(r), j = 0;
R(r)u′v(r)/3, j = 1;

here w = (r, j) ∈ R3 × {0, 1} is a point of extended phase space, u′v = (v/|v|,∇u) and function
R(r) is the distance from the point r to the boundary.

Equivalent integral equation. We offer to rewrite equation (1) isolating diffusion operator
Dκ ≡ ∆− κ2 (for some positive constant κ2 ) on the left-hand side:

∆u(r)− κ2u(r) = −(
κ2 − c(r)

)
u(r)− (

v(r),∇u(r)
)− g(r).

Integral equations for the function u(r) and its spatial derivative u′v(r) can be obtained using the
mean-value theorem. We suggest to use non-central Green’s functions Gκ

r0
(r, r′) for the diffusion

operator Dκ in the ball B(r0, R(r0)) which is the largest one centered at r0 and contained in Ω :

Gκ
r0

(r, r′) =
1
4π

[
sinh {κ(R− |V |)}

sinh {κR} |V | − sinh {κ (R− |W |)}
sinh {κR} |W |

]
, V = r′ − r; W = %(r′ − r0)− r − r0

%
.

here % = R(r)/|r′ − r0| . Let Γε be the ε -strip of the boundary Γ and Rmax = max
r∈Ω

R(r) .

To construct statistical algorithms, integral equations for u(r) and u′v(r) are combined below
into a unified integro-algebraic equation with r0 = r . We choose the parameter c0 such that
c0R

2
max < 6 and use the variable p(r) = (1− c0R

2(r)/6) for randomization of the unified equation:

U(r, j) = p(r)
∫

S(r,R)

FS(r, r′)U(r′, 0)Qj0(r, r′)dSr′ + G(r, j)+ (3)

+(1− p(r))
∫

B(r,R)

Fj(r, r′)
[
pc
1Q

c
j1(r, r

′)U(r′, 1) + pc
0Q

c
j0(r, r

′)U(r′, 0)
]
dr′,

here S(r,R) = ∂B(r,R) , Q
(c)
jj′ are weights, pc

0 = pc
0(r, r

′) and pc
1 = 1− pc

0 are some probabilities.
Having the equation (3), we construct the Random Walk on Spheres and Balls Algorithm which
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enables us to estimate both the solution u(r) and its gradient. The statistical estimator ζ(w0) for
U(w0) is derived according to (3) by standard Monte Carlo procedure.

During the random walk on spheres and balls simulation, when the path falls into Γε at a step
with a random number N , the chain terminates and the estimator for U(wN ) multiplied by the
weight QN is added to the counter. As a result, the following estimator for U(w0) is obtained:

ζ(w0) =
N−1∑

n=0

QnG(wn) + QNU(wN ), Qn+1 = Qn ·Q(c)
jnjn+1

, Q0 = 1.

Theorem 1. If −c∗ is the first eigenvalue of the Laplace operator in Ω and for any r ∈ Ω the
following assumptions hold: |κ2−c(r)|+3|v(r)|/R(r) 6 2c0/3 , c0 < 6c∗/π2 ' 0.6079c∗ , then there
exists a unique bounded solution to the equation (3) that admits a representation by a Neumann
series and equals the solution to the BVP (1)–(2): U(r, 0) = u(r), U(r, 1) = R(r)u′v(r)/3.

Boundary condition. Since the values of U(w) in Γε are indeterminate, the corresponding
estimators are obtained as follows. For jN = 0 and r ∈ Γ1ε one can set U(r, 0) = ψ1(r∗) , where
r∗ ∈ Γ1 , |r − r∗| = R(r) . For r ∈ Γ2ε the following representation holds:

U(r, 0) =
1 + α · dγ(r)

1 + α · (dγ(r) + ε)
U(r − εγ, 0) +

ε

1 + α · (dγ(r) + ε)
ψ(π(r)) +O(ε2),

here dγ(r) is the distance between r and Γ2 along the vector field γ , and π(r) is the projection
of the point r ∈ Γ2ε onto Γ2 along the vector field γ . According to the latter representation the
algorithm with reflection should be applied. Assuming that the first derivatives of the solution are
bounded in Ω , and therefore R(r)u′v(r) = O(ε) for r ∈ Γε , one can approximately set U(r, 1) = 0
for jN = 1 . As a result, the realizable but biased estimator ζε(w0) is obtained for U(w0) .

Theorem 2. If the first derivatives of u(r) are bounded in Ω , then there exists Eζε(r, 0) =
uε(r) and |u(r) − uε(r)| = O(ε), ε > 0, r ∈ Ω. Moreover, there exists Eζε(r, 1) = fε(r) and
|R(r)u′v(r)/3− fε(r)| = O(ε), ε > 0, r ∈ Ω.

Simulation of the probability densities in (3). The function FS is the probability density
of uniform distribution on the sphere: FS(ϕ, θ)dS = dϕ sin(θ)dθ/4π , here θ ∈ (0, π) , ϕ ∈ (0, 2π) ,
ρ = |r′−r| ∈ (0, R) are coordinates of the local (with the origin at the point r ) spherical coordinate
system. The probability densities F0 and F1 are factorable in this coordinate system: Fj(r, r′)dr′ =
FS(ϕ, θ)dϕdθ · F ρ

j (ρ)dρ, j = 0, 1; and the factors F ρ
j (ρ) have the following form:

F ρ
0 (ρ) =

6C−1
01 (κR)

R2 sinh {κR}ρ sinh {ρκ} , F ρ
1 (ρ) =

4C−1
11 (κR)

R2 sinh{κR}
[
κρ cosh{ρκ}+ sinh{ρκ} − κρ3

R2

]
,

here ρκ ≡ κ(R − ρ) . We can use the von Neumann rejection method for sampling the probability
density F ρ

0 (ρ) . A majorant function can be chosen in two ways:

g0(ρ) ≡ ρ sinh {ρκ} / sinh {κR} 6 ρ exp(−κρ) ≡ g1(ρ) 6 R exp(−κρ) ≡ g2(ρ).

If the function g1 , which is proportional to the gamma distribution with parameters (2, κ) , is also
sampled by the rejection method (i. e. rejecting the values of ρ which is greater than R ), then the
ratio of the corresponding computational costs is the following: S2/S1 = κR(1− e−κR) . Therefore,
if S2 < S1 (it holds when κR < 1.35 ) then we use the majorant function g2 or else we use g1 .

For the probability density F ρ
1 (ρ) we have κρ cosh{ρκ}+sinh{ρκ}−κρ3/R2 6 (κR+1) cosh{ρκ} .

If α is a uniform random variable on (0, 1) and variable η is the solution to the equation
sinh{κ(R− η)} = α sinh{κR} then η has the probability density Aκ,R cosh{ρκ} on (0, R) .

The similar technique with Green’s function for Laplace operator ∆ is described in [1].
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