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The main aim of our work is to give mathematical explanation of numerical experiments with
limit cycles oscillations in gene networks models, see [1–3]. These experiments are performed in
collaboration of Sobolev Institute of Mathematics and Institute of Cytology and Genetics of SB RAS.
We consider here the following dynamical systems as models of the gene networks with negative
feedbacks

ẋ = Φ1(z, x), ẏ = Φ2(x, y), ż = Φ3(y, z). (1)

Here Φi are sufficiently smooth and monotonically decreasing with respect to both their arguments
so, that x, y, z ∈ [0,∞) . We assume that Φi(xi−1, 0) > 0 and ∂Φi

∂xi
(xi−1, xi) 6 δi < 0 . The

system (1) and each of its odd-dimensional analogues has a unique stationary point M∗ .
Lemma. Topological index of the stationary point M∗ in odd-dimensional dynamical system

of the type (1) equals −1 .
Let αi = Φi(0, 0) be the maximal value of the function Φi . For large values of t all trajectories

of the system (1) enter some parallelepiped Π = [ε1, A1]× [ε2, A2]× [ε3,A3] . Here, one can take for
the beginning εi = 0 and Ai = αi/δi . Hence, Π is a positively invariant domain of (1). The best
values of εi and Ai satisfy the system

Φi(Ai−1, εi) = 0, Φi(εi−1, Ai) = 0.

Consider the planes parallel to the coordinate ones and containing the point M∗ = (x∗, y∗, z∗) .
They compose the subdivision Π =

⋃
Qabc , where

Qabc = {x ∈ Π | x ≷a x∗, y ≷b y∗, z ≷c z∗} ,

a, b, c ∈ {0, 1} , the symbol ≷0 denotes 6 , and ≷1 denotes > . One can verify that the paralle-
lepipeds Q000 and Q111 can be excluded from the invariant domain. The union of remaining 6
parallelepipeds Π̃ ⊂ Π is again a positively invariant domain of the system (1). Denote their
common faces as follows: F001 = Q001 ∩ Q011 , F011 = Q011 ∩ Q010 , F010 = Q010 ∩ Q110 etc. The
shifts along the trajectories of the system (1) define a sequence of smooth mappings

. . . → F001 → F011 → F010 → F110 → F100 → F101 → F001 → . . . (2)

Similar diagram was constructed in [4] for quite different class of dynamical systems.
The characteristic equation of linearization of (1) near the point M∗ has one negative eigenvalue

λ1 < 0 corresponding to an eigenvector e1 with positive coordinates. Let λ2 , λ3 be its other
eigenvalues. If Re λ2 , Reλ3 < 0 , then the point M∗ is stable and attracts all trajectories of the
system (1). The previous lemma implies that the signs of Reλ2 , Reλ3 coincide.

Let Reλ2 , Reλ3 > 0 . In this case the stationary point M∗ is unstable. Since the vectors
±e1 are directed from M∗ into Q000 or Q111 , the invariant domain of our system can be reduced
to (Π̃ \ U) where U is some neighborhood of the point M∗ . Consider the intersection F ′ =
(Π̃ \ U) ∩ F001 and composition ϕ6 of 6 consecutive shifts ϕ6 : F001 → F001 in (2) which maps
the compact contractible set F ′ into itself ϕ6 : F ′ → F ′ . According to the well-known torus
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principle, Brouwer’s fixed point theorem implies existence of at least one point M0 ∈ F ′ such that
ϕ6(M0) = M0 . So, trajectory of this point is a closed cycle, and we have proved

Theorem 1. If Reλ2 , Reλ3 > 0 , then the dynamical system (1) has at least one periodic
trajectory in the invariant domain.

If Φi(u,w) = fi(u)−w , then this invariant domain Π̃ can be reduced to the union of 6 trihedral
prisms Pabc ⊂ Qabc , 1 6 a + b + c 6 2 spanned on the intersections listed in (2). Each of these
prisms Pabc is obtained by excising from Qabc along one of its diagonal planes, see [2]. Further
reductions of this invariant domain can be realized as well. Note that in this case Reλ2 and Re λ3

are complex conjugate.
Brouwer’s fixed point theorem does not guarantee uniqueness and stability of this cycle. Numeri-

cal experiments show that the trajectories of the systems of the type (1) do not approach to the
cycles monotonically, so, their stability can not be proved with the help of elementary estimates.
In some particular cases, for small positive values of Re λ2 , Reλ3 , uniqueness and stability of this
cycle in a small neighborhood of M∗ can be obtained by methods of Andronov – Hopf bifurcation
theory. An explicit formula for the first Lyapunov parameter ν1 was obtained in [3] in the case of
symmetric systems (1) with

Φ1(z, x) = f(z)− x; Φ2(x, y) = f(x)− y; Φ3(y, z) = f(y)− z. (3)

There, a domain of parameters corresponding to ν1 < 0 was described, and this inequality implies
stability the bifurcation cycle, see also [1]. In the case of asymmetric dynamical system of a general
type the explicit analytic expression for ν1 is too cumbersome, but it can be easily used in analysis
of the numerical experiments.

Similar results on existence of periodic trajectories and their bifurcations can be obtained
for other odd-dimensional asymmetric dynamical systems of the type (1). The even-dimensional
dynamical systems of this type have usually several stationary points, so their analysis is much
more difficult.

Using extended Poincaré-Benedixon theorem estimates of the norm of the transfer matrix and
the amenable stability approach elaborated by R.A.Smith ([5], see also [6]), we obtain

Theorem 2. If the functions Φi have the form (3) and satisfy the conditions of the theorem 1,
and −3/2 < f ′(x) < −1/2 for all points in the invariant domain, then the system (1) has at least
one periodic trajectory which is orbitally stable in the invariant domain.
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