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In this talk we study a boundary value problem in a two-dimensional infinite elastic strip with
a semi-infinite crack (cf. [7] in References).

By u = (ui)i=1,2,3 and σ = (σij)i,j=1,2,3 we denote the displacement vector and the stress
tensor, respectively. Let

Ω = {(x1, x2) ∈ R2 | x1 ∈ R,−a < x2 < a} (a > 0)

be a strip in R2 , representing a homogeneous isotropic elastic plate in the state of a plane strain.
Then, the linearized elasticity equations for a homogeneous isotropic material consist of the constitu-
tive law (Hooke’s law) and the equilibrium conditions without any body forces. On the boundaries
of the strip

∂Ω+ = {(x1, a) | x1 ∈ R} and ∂Ω− = {(x1,−a) | x1 ∈ R}
Neumann and Dirichlet boundary conditions are imposed, respectively. We denote by

Γ = {(x1, 0) | −∞ < x1 ≤ 0}
the crack in Ω . On the crack we assume the free traction condition.

Then, our problem is to find u satisfying

(P)





σij,j ≡ Au = 0 in Ω \ Γ,

σ+
ijνj = σ−ijνj = 0 on Γ±,

u = 0 on ∂Ω−,

σijνj ≡ Tu = p on ∂Ω+.

Here and in what follows we use the summation convention. In the problem (P) p = (p1, p2)T is
a given vector of continuous functions on ∂Ω+ and ν = (ν1, ν2)T is the unit outward normal and

A ≡
(

µ4+ (λ + µ)∂2
1 (λ + µ)∂1∂2

(λ + µ)∂1∂2 µ4+ (λ + µ)∂2
2

)
,

4 ≡ ∂2
1 + ∂2

2 ,

T ≡
(

(λ + 2µ)ν1∂1 + µν2∂2 µν2∂1 + λν1∂2

λν2∂1 + µν1∂2 µν1∂1 + (λ + 2µ)ν2∂2

)
,

where λ and µ are Lamé constants satisfying that shearing strain µ > 0 , modulus of compression
3λ + 2µ ≥ 0 , in which case it is easy to see that the operator A is elliptic. And Γ± means both
sides of Γ . Here for every x ∈ Γ , σ±ijνj = σ±ij(x)νj(x) means the limit of σ±ij(x̄)νj(x) as x̄ ∈ Ω \Γ
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tends to x ∈ Γ along the normal ν(x) . The limit values σ+
ij and σ−ij may be different in general,

therefore σij may have a jump on Γ . At end-point of Γ (i. e. (0, 0) ) we assume

lim
x1→0

σijνj |x∈Γ±\{(0,0)} = 0.

We introduce the class K of functions u(x) with the properties (cf. [8]):

1. u ∈ C0(Ω \ Γ) ∩ C2(Ω \ Γ) ,

2. ∇u ∈ C0(Ω \ Γ \ {(0, 0)}) ,
3. in the neighborhood of (0, 0) there exist positive constant C and ε > −1 such that

| ∇u(x) |≤ C | x |ε as x → 0,

4. for every x ∈ ∂Ω± there exists a uniform limit of ∇x̄u(x̄) as x̄ ∈ Ω \ Γ tends to x ∈ ∂Ω±
along the normal νx .

Furthermore, the class U is defined by

U = {u | u → 0 as | x |→ ∞}
and

C0,α
γ = {f(x) ∈ C0,α | f(x) = O(| x |−γ) as | x |→ ∞} (1 < γ).

The usage of the plane elastic single and double layer potentials reduces the problem (P) to
a system of singular integral equations. It is shown that this system is uniquely solvable in the
appropriate H ö lder spaces by the Fredholm alternative (cf. [2, 10, 11]).

Theorem. The problem (P) has a unique solution u ∈ K ∩ U for any p ∈ C0,α
γ (∂Ω+) with

any α ∈ (0, 1) and any γ > 1 .
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