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10 . We consider the differential equation
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)
, (1)

in a bounded domain G of points z = x + iy .
The theory of I. N Vekua [1] of generalized analytic functions, which are the generalized (in

some sense) solutions of the equation (1), where A(z) , B(z) ∈ Lq(G) , q > 2 , have found many
real targets of applications. A somewhat different approach to the theory is presented in [2]. A very
wide class of an elliptic system of equations of a more general form reduced to the form (1).

The generalized in the sense of [1] solutions of equation (1) with coefficients A(z) and B(z)
from Nikol’skii – Besov spaces Bα

p,θ(G) , where α , p , θ satisfy one of the conditions

a) 1 < p < 2, α =
2
p
− 1, θ = 1,

b) p ≥ 2, 0 < α < 1, 1 ≤ θ ≤ ∞,

G is a domain with Lyapunov’s boundary Γ ∈ C1
ν , α < ν ≤ 1 , are the generalized analytic

functions [3]. The regular solutions of the equation (1) belong to B1+α
p,θ (G) . In the case b) there

occurs the imbedding Bα
p,θ(G) ⊂ Lq(G) for some q > 2 , that we have the case [1]. However, the

assertion on the unconditional solvability of equation (1) in the fractional spaces B1+α
p,θ (G) is a

new one. In the case a), for 1 < p < 2 , α = 2
p − 1 , Bα

p,1(G) is not imbedded in Lq(G) for any
q > 2 , but B1+α

p,1 (G) ⊂ C(G) [4]. Thus, this assertion introduces a new class of coefficients, not
included in Lq(G) , q > 2 , for which equation (1) always has a (regular) solution, which is continues
(from B1+α

p,1 (G) ) in closed region G . Moreover, in the case b) for αp = 2 and θ = 1 , we have

B
2
p

p,1(G) ⊂ C(G) , but B
2
p

p,1(G) * Cβ(G), 0 < β ≤ 1, B
1+ 2

p

p,1 (G) ⊂ C1(G) . Thus, it follows from this

assertion that, for any continuous (not necessarily Holder continuous) A(z) , B(z) ∈ B
2
p

p,1(G) , the
equation (1) has a solution in the classical sense. This is a new property of equation (1) (in general
for elliptic equations) has been proved for any Holder continuous coefficients.

20 . The Cauchy type integral

Φ(z) =
1

2πi

∫

Γ

f(τ)dτ

τ − z
, z ∈ G,

with arbitrary density f(t) ∈ B
1
p

p,1(Γ) ⊂ C(Γ) , 1 < p < 2 , as a function of z belongs to B
2
p

p,1(G) ⊂
C(G) [3]. This result seems interesting because it is known that a Cauchy type integral with
arbitrary continuous density in general need not be a continuous function in the closed domain.
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30 . Consider the singular integral equation

a(t)f(t) +
b(t)
πi

∫

Γ

f(τ)dτ

τ − t
+ (Kf)(t) = g(t), t ∈ Γ, (2)

where a(t) , b(t) , g(t) ∈ B
1
p

p,1(Γ) , 1 < p < 2 , are given functions, K is a compact operator in

B
1
p

p,1(Γ) . Let a2(t)− b2(t) 6= 0 on Γ i. e., (2) is the elliptic equation.

The equation (1) is Fredholm one in B
1
p

p,1(Γ) ⊂ C(Γ) , 1 < p < 2 . It is possible to show for
equation (2) the spaces of Fredholm’s solvability in the cases, when ellipticity is violated at the
finitely many points on Γ [5].

The analogous results are valid for the systems of the equations of type (2).
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