УДК 517.54

ON CAUCHY AND MORERA TYPE CRITERIONS FOR BOUNDEDNESS OF THE COEFFICIENT OF DISTORTION

© Mikhail Korobkov

korob@math.nsc.ru

Sobolev Institute of Mathematics, Novosibirsk, Russia

We give criteria for a mapping to have bounded distortion in terms of an integral estimate of the multiplicity function without any a priori assumption on the differential properties of the mapping. In this talk we extend some results of [1].

Let Δ be a domain in \mathbb{R}^n , $n = 2, 3, \ldots$ Recall that a continuous mapping $f = (f_1, \ldots, f_n)$: $\Delta \to \mathbb{R}^n$ is a mapping with bounded distortion [2] if the following conditions are fulfilled: (i) $f \in W^{1,n}_{loc}(\Delta);$

(ii) The Jacobian $J(f, x) = \det\left(\frac{\partial f_k}{\partial x_l}\right) \ge 0$ almost everywhere (a. e.) in Δ ;

(iii) There exists a constant $K \ge 1$ such that $|f'(x)|^n \le K n^{n/2} J(f, x)$ a. e. in Δ , where $|f'(x)| = \left(\sum_{k,l=1}^n \left(\frac{\partial f_k}{\partial x_l}\right)^2\right)^{1/2}$ is the Hilbert norm of the derivative f'(x). The least constant K is called the distortion coefficient (dilatation) of f [2].

Denote the differential form $f_k dx_1 \wedge \cdots \wedge dx_l \wedge \cdots \wedge dx_n$ by ω_{kl} . Given a ball $B = B(x, r) \subset \Delta$, consider the numerical $(n \times n)$ -matrix

$$\Omega(B) = \left(\int_{\partial B} \omega_{kl}, \ 1 \le k, l \le n\right).$$

Endow the space \mathcal{M}_n of all $(n \times n)$ -matrices with the Hilbert norm

$$|(a_{kl})| = \left(\sum_{k,l} a_{kl}^2\right)^{\frac{1}{2}}.$$

Theorem. Let $f : \Delta \to \mathbb{R}^n$ be a continuous mapping of a domain $\Delta \subset \mathbb{R}^n$. Then $\exists K_0 > 1$ $(K_0 \text{ doesn't depend on } f)$ such that f is a mapping with distortion at most $K \in [1, K_0]$ if and only if the inequalities

$$\left(\frac{|\Omega(B)|}{|B|}\right)^n \le n^{n/2} K^n \, \frac{\int_{\mathbb{R}^n} N(f|_B, y) \, dy}{|B|} < \infty;$$
$$\det \Omega(B) > 0$$

hold for every ball B = B(x, r) such that $B(x, 2r) \subset \Delta$.

Here we used the following notations. |E| is the Lebesgue measure of a set E, $N(f|_E, \cdot)$ is the multiplicity function of the restriction $f|_E$, i. e., $N(f|_E, y) = \operatorname{card} (f^{-1}(y) \cap E)$.

REMARK. Under the extra topological assumption that f is sense-preserving, above Theorem was proved in [1, Theorem 1']. Thus, Theorem 1 is a substantial strengthening of Theorem 1' of [1]. The author was supported by the Russian Foundation for Basic Research (Grant 05-01-00482-(a)) and

the President of the Russian Federation (Grant MK-3778.2004.1)

REFERENCES

- 1. Kopylov A. P., Korobkov M. V., Ponomarev S. P. Stability in the Cauchy and Morera theorems for holomorphic functions and their spatial analogs // Sibirsk. Mat. Zh. 2003. V. 44, № 1. P. 120–131.
- 2. Reshetnyak Yu. G. Spase Mappings with Bounded Distortion. Providence, Amer. Math. Soc., 1989.