УДК 517.962.22

ОБ ОДНОЙ ОБЩЕМ ДВУХМЕРНОМ ИНТЕГРАЛЬНОМ УРАВНЕНИИ ТИПА ВОЛЬТЕРРА С ОСОБЕННОСТЬЮ И СИЛЬНОЙ ОСОБЕННОСТЬЮ НА ГРАНИЦЕ ОБЛАСТИ

© Л. Раджабова

lutfya62@mail.ru

Таджикский транспортный институт, Душанбе, Таджикистан

Через D обозначим прямоугольник $D = \{(x,y): a < x < a_0, b_0 < y < b\}$. Соответственно обозначим $\Gamma_1 = \{a < x < a_0, y = b\}$, $\Gamma_2 = \{x = a, b_0 < y < b\}$. В области D рассмотрим следующее интегральное уравнение:

$$u(x,y) + \int_{a}^{x} \frac{K_{1}(x,y;t)u(t,y)}{(t-a)^{\alpha}} dt - \int_{y}^{b} \frac{K_{2}(x,y;s)u(x,s)}{(b-s)^{\beta}} ds + \int_{a}^{x} \frac{dt}{(t-a)^{\alpha}} \int_{y}^{b} \frac{K_{3}(x,y;t,s)u(t,s)}{(b-s)^{\beta}} ds = f(x,y)$$
(1)

где $\alpha=const>0$, $\beta=const>0$, $K_1(x,y;t)$, $K_2(x,y;s)$, $K_3(x,y;t,s)$ — заданные функции по своим переменным, $f(x,y)\in C(\overline{D})\cap C^2_{xy}(D)$ — заданная функция в \overline{D} .

К рассмотрению частных случаев интегрального уравнения (1) приводят задачи о нахождении непрерывных решений линейных гиперболических уравнений второго порядка с двумя сингулярными линиями.

Случай, когда в интегральном уравнении (1) ядра $K_1(x, y; t)$, $K_2(x, y; s)$, $K_3(x, y; t, s)$ являются постоянными числами, рассмотрен в [1, 2]. Случай, когда данные ядра являются функциями переменных интегрирования, рассмотрен в [3, 4].

В данной работе интегральное уравнение (1) исследовано в случае, когда $\alpha=1$, $\beta>1$, $\delta=-\lambda\mu$, где $\lambda=K_1(a,b;a),\ \mu=K_2(a,b;b),\ \delta=K_3(a,b;a,b)$

Ранее интегральное уравнение (1) было изучено в случаях, когда $\alpha = 1$, $\beta = 1$, $\delta = -\lambda \mu$ [5]; $\alpha > 1$, $\beta > 1$, $\delta = -\lambda \mu$ [6].

В данной работе доказано, что для определенных значений λ , μ : $\lambda < 0$, $\mu > 0$; $\lambda < 0$, $\mu < 0$; $\lambda > 0$, $\mu > 0$ однородное интегральное уравнение (1) имеет бесконечное число линейнонезависимых решений, для других значений λ , μ однородное интегральное уравнение (1) не имеет решения, кроме нулевого ($\lambda > 0$, $\mu < 0$).

Неоднородное уравнение (1) для некоторых значений λ , μ всегда имеет решение и общее решение содержит четыре произвольные функции одного переменного (случай $\lambda < 0$, $\mu > 0$), при $\lambda < 0$, $\mu < 0$; $\lambda > 0$, $\mu > 0$ общее решение неоднородного уравнения содержит две произвольные функции одного переменного и в случае $\lambda > 0$, $\mu < 0$ неоднородное уравнение (1) имеет единственное решение.

Имеет место следующее утверждение:

Теорема. Пусть в уравнении (1) $\alpha = 1$, $\beta > 0$, $\lambda < 0$, $\mu > 0$, $f(x,y) \in C(\overline{D}) \cap C^2_{xy}(D)$, f(a,b) = 0 с асимптотическим поведением:

$$f(x,y) = o\left[(x-a)^{\delta_1} (b-y)^{\gamma_1} e^{-\mu \omega_b^{\beta}(y)} \right], \quad \delta_1 > |\lambda|, \quad \gamma_1 > \beta - 1.$$

Функции $K_1(x,y;t)$, $K_2(x,y;s)$, $K_3(x,y;t,s)$ соответственно по своим переменным являются непрерывными для всех $(x,y) \in \overline{D}$ и $(t,s) \in (\overline{D})$. Кроме того, допустим что разности

 $K_1(x,y;t) - K_1(a,b;a)$, $K_2(x,y;s) - K_2(a,b;b)$, $K_3(x,y;t,s) - K_3(a,b;a,b)$ при $x \to a$, $y \to b$, $t \to a$, $s \to b$ обращаются в нуль со следующими асимптотическими поведениями:

$$K_{1}(x,y;t) - K_{1}(a,b;a) = o\left[(x-a)^{\delta_{1}}(b-y)^{\gamma_{1}}(t-a)^{\delta_{2}}e^{-\mu\omega_{b}^{\beta}(y)}\right], \quad \delta_{1} > |\lambda|, \quad \gamma_{1} > \beta - 1,$$

$$K_{2}(x,y;s) - K_{2}(a,b;b) = o\left[(x-a)^{\delta_{1}}(b-y)^{\Gamma_{1}}(b-s)^{\gamma_{2}}(t-s)^{\gamma_{2}}e^{-\mu\omega_{b}^{\beta}(y)}\right], \quad \delta_{2} > 0, \quad \gamma_{2} > \beta - 1,$$

$$K_{3}(x,y;t,s) - K_{3}(a,b;a,b) = o\left[(x-a)^{\delta_{1}}(b-y)^{\gamma_{1}}(t-a)^{\delta_{2}}(b-s)^{\gamma_{2}}e^{-\mu\omega_{b}^{\beta}(y)}b^{\beta}(y)\right],$$

$$\omega_{b}^{\beta}(y) = \left[(\beta - 1)(b-y)^{\beta - 1}\right]^{-1}.$$

Тогда задача о нахождении общего решения двумерного интегрального уравнения (1) в классе $C(\overline{D})$ эквивалентна задаче о нахождении решения двумерного интегрального уравнения Вольтерровского типа со слабыми особенностями следующего вида

$$u(x,y) + \int_{a}^{x} \frac{N_{1}(x,y;t)u(t,y)}{t-a}dt + \int_{y}^{b} \frac{N_{2}(x,y;s)u(x,s)}{(b-s)^{\beta}}ds + \int_{a}^{x} \frac{dt}{t-a} \int_{y}^{b} \frac{N_{3}(x,y;t,s)u(t,s)}{(b-s)^{\beta}}ds = P_{1,\beta}\left[\varphi_{1}(x),\varphi_{2}(x),\psi_{1}(y),\psi_{2}(y),f(x,y)\right],$$

где $N_1(x,y;t)$, $N_2(x,y;s)$, $N_3(x,y;t,s)$ — известные функции, непрерывные по переменным (x,y) и имеющие нуль порядка больше чем $\varepsilon>0$ по переменному t и нуль порядка больше чем $\beta-1$ по переменному s, $P_{1,\beta}\left[\varphi_1(x),\varphi_2(x),\psi_1(y),\psi_2(y),f(x,y)\right]$ — известный интегральный оператор, $\varphi_j(x)$, $\psi_j(x)$, j=1,2 — произвольные функции точек Γ_1 , Γ_2 удовлетворяющие определеным условиям.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Раджабов Н., Раджабова Л.* Исследование одного класса двухмерного интегрального уравнения с фиксированными особыми ядрами, связанное с гиперболическим уравнением // Докл. АН России. 2003. Т. 391, № 1. С. 20–22.
- 2. Rajabov N., Rajabova L., Ronto M. On some two dimentional Volterra type linear integral equations with syper-singularity // Mathematical Notes. 2003. V. 4, № 1, P. 65–76.
- 3. *Раджабова Л.* К теории одного класса двухмерного немодельного интегрального уравнения вольтерровского типа со сверхсингулярными граничными линиями в ядре // Докл. АН России. 2005. Т. 400, № 1. С. 602–605.
- 4. *Раджабова Л.* Явное решение одного класса немодельного двухмерного интегрального уравнения вольтерровского типа с одной сингулярной и одной слабо—сингулярной линиями // Труды Межд. конф. "Дифференциальные уравненияс частными производными и родсвенные проблемы анализа и информатики". Т. II. Ташкент, 2004. С. 78–80.
- 5. *Раджабова Л.* Об одном общем интегральном уравнении типа Вольтерра с сингулярными линиями // Труды Межд. научно-теор.конф. по качественным исследованиям дифференциальных уравнений и их приложений, посвященной 10-летию РТСУ. Душанбе, 2005. С. 96–98.
- 6. Раджабова Л. Об одном общем интегральном уравнение типа Вольтерра со сверхсингулярными линиями // Вестник национального университета. Душанбе, 2005. № 2. С. 116–123.