УДК 517.518.85

О РАВНОМЕРНОЙ СХОДИМОСТИ ИНТЕРПОЛЯЦИОННЫХ СПЛАЙНОВ И ПРОИЗВОДНЫХ

© Ю. С. Волков

volkov@math.nsc.ru

Институт математики им. С. Л. Соболева СО РАН, Новосибирский государственный университет, Новосибирск

Пусть полный полиномиальный сплайн s степени 2n-1 гладкости $C^{2n-2}[a,b]$ интерполирует некоторую функции f на сетке $\Delta: a = x_0 < x_1 < \ldots < x_N = b$. Изучается задача о сходимости процессов интерполяции, а именно при каких условиях $s^{(k)}$ сходится к $f^{(k)}$ для любой функции $f \in C^k[a,b], \ 0 \leqslant k \leqslant 2n-1$. Под сходимостью понимается равномерная сходимость, т. е. $\|s^{(k)}-f^{(k)}\|_{L_\infty} \to 0$ при $\bar h \to 0$, где $\bar h$ — наибольший шаг сетки Δ .

Наибольший интерес представляет вопрос: при каких значениях $\,k\,$ сходимость будет иметь место без ограничений на последовательность разбиений $\{\Delta\}$. К. де Бор [1] высказал предположение, что безусловная сходимость будет иметь место только для средних производных порядков n-1 и n, и показал, что при $k=0,\ldots,n-2$ сходимость без ограничений на сетки невозможна. Автором [2] были построены примеры расходимости процессов интерполяции для $k=n+1,\ldots,2n-1$, т. е. и для обеспечения сходимости старших производных на последовательность сеток необходимо накладывать какие-либо ограничения.

При k=n указанная задача эквивалентна широко известной проблеме K. де Бора об ограниченности нормы оператора наилучшего среднеквадратичного приближения функции сплайнами степени n как операторов из C[a,b] в C[a,b], которая после усилий многих математиков недавно была решена А. Ю. Шадриным [3]. Тем самым для интерполяционных сплайнов s степени 2n-1 доказано, что $\|s^{(n)}-f^{(n)}\|_{L_\infty}\to 0$ при $\bar h\to 0$ для любой функции $f \in C^{n}[a,b]$ без каких-либо ограничений на сетки.

В докладе устанавливаются оценки величины $\|s^{(k)}-f^{(k)}\|_{L_{\infty}}$ через тах-норму обратной матрицы к A_k и модуль непрерывности $f^{(k)}$. Матрицы A_k были введены автором [4], [5] как матрицы систем определяющих уравнений для построения интерполяционных сплайнов произвольной степени. Определяемыми параметрами при этом являются коэффициенты разложения производной сплайна порядка k по нормализованным B-сплайнам.

Теорема 1. Для k-й производной погрешности интерполяции полным сплайном s функции $f \in C^k[a,b]$ $(0 \leqslant k \leqslant 2n-2)$ справедлива оценка

$$||s^{(k)} - f^{(k)}||_{L_{\infty}} \leq [K_1 + K_2 || (\mathbf{A}_{2n-k-1}^T)^{-1} ||_{\infty}] \omega(f^{(k)}; \bar{h}),$$

где константы K_1 и K_2 зависят только от n и k, но не от Δ .

Для периодического случая данная теорема доказана в [6].

Кроме того, вопрос о сходимости процессов интерполяции эквивалентен вопросу об ограниченности норм соответствующих операторов интерполяции P_{Δ} , связывающих функцию $f\in C[a,b]$ и полный сплайн s , интерполирующий её на сетке Δ , т. е. $s=P_{\Delta}f$. Если интерполируемая функция более гладкая $f \in C^k[a,b]\,,\ 1\leqslant k\leqslant 2n-1\,,$ то можно рассмотреть оператор $P_{\Delta}^{(k)}$, связывающий $f^{(k)}$ с соответствующей производной сплайна $s^{(k)}$, а именно $P_{\Delta}^{(k)}f^{(k)}=\left(P_{\Delta}f\right)^{(k)}$. В этом случае изучается вопрос об ограниченности $\left\|P_{\Delta}^{(k)}\right\|$. При k=0считаем, что $P_{\Delta}^{(0)}=P_{\Delta}$. **Теорема 2.** Для любого $k=0,\dots,2n-1$ имеют место неравенства

$$D_{k,n} \|\boldsymbol{A}_k^{-1}\|_{\infty} \leqslant \|P_{\Delta}^{(k)}\| \leqslant \|\boldsymbol{A}_k^{-1}\|_{\infty},$$

с константами $D_{k,n}$, зависящими только от n и k, но не от сетки Δ .

Следствие. Пусть на последовательности сеток $\{\Delta\}$ с условием $\bar{h} \to 0$ последовательность полных сплайнов $\{s\}$ интерполирует функцию $f \in C^k[a,b]$, $k=0,\ldots,2n-1$. Тогда $s^{(k)}(x) \to f^{(k)}(x)$ равномерно относительно x на [a,b] тогда и только тогда, когда существует число K такое, что для матрицы A_k соответствующей системы уравнений построения сплайна s выполнено $\|A_k^{-1}\|_{\infty} \leqslant K$.

сплайна s выполнено $\|{m A}_k^{-1}\|_\infty\leqslant K$. Теорема 2 показывает, что сходимость процесса интерполяции для какой-либо производной k, $0\leqslant k\leqslant 2n-1$, при требованиях гладкости $f\in C^k[a,b]$ эквивалентна ограниченности тах-нормы обратной матрицы к ${m A}_k$. Теорема 1 показывает, что эта же сходимость может обеспечиваться ограниченностью тах-нормы обратной матрицы к транспонированной ${m A}_{2n-k-1}^T$, поскольку $\omega(g;\bar{h})\to 0$ при $\bar{h}\to 0$ для любой функции $g\in C[a,b]$.

С другой стороны, если для некоторой последовательности сеток $\{\Delta\}$ нормы $\|\boldsymbol{A}_k^{-1}\|_{\infty}$ могут быть ограничены константой, не зависящей от сеток, то в силу ленточности матриц нормы $\|(\boldsymbol{A}_k^T)^{-1}\|_{\infty}$ тоже будут ограничены константой, не зависящей от сеток.

Таким образом, «хорошая» оценка последовательности норм $\|A_k^{-1}\|_{\infty}$, соответствующих некоторой последовательности сеток $\{\Delta\}$, гарантирует равномерную сходимость $s^{(k)}$ к $f^{(k)}$ при $\bar{h} \to 0$ для функций $f \in C^k[a,b]$ и одновременно сходимость $s^{(2n-k-1)}$ к $f^{(2n-k-1)}$ для функций $f \in C^{2n-k-1}[a,b]$ на рассматриваемой последовательности сеток $\{\Delta\}$. И наоборот, сходимость одного из указанных процессов вызывает сходимость другого, а, следовательно, и ограниченность последовательности норм матриц A_k^{-1} .

Таким образом, как следствие теорем 1 и 2 и результата А. Ю. Шадрина [3], получаем окончательное доказательство предположения К. де Бора [1], т. е. безусловную сходимость и остававшейся средней производной порядка k=n-1.

Теорема 3. Для любой функции $f \in C^{n-1}[a,b]$ и любой последовательности сеток $\{\Delta\}$, удовлетворяющей условию $\bar{h} \to 0$, последовательность $s^{(n-1)}$ сходится равномерно к $f^{(n-1)}$, где полные сплайны s степени 2n-1 интерполируют функцию f в узлах сеток Δ и значения производных $f^{(p)}(a)$ и $f^{(p)}(b)$, $p=1,\ldots,n-1$.

Работа выполнена при частичной финансовой поддержке грантов РФФИ-ННИО (проект 04-01-04003), Отделения математических наук РАН (проект 2006-1.3.1), Интеграционных проектов СО РАН (проект 2006-66).

СПИСОК ЛИТЕРАТУРЫ

- 1. de Boor C. On bounding spline interpolation // J. Approxim. Theory. 1975. V. 14, N 3. P. 191–203.
- 2. Волжов Ю. С. Расходимость интерполяционных сплайнов нечетной степени // Вычислительные системы. Новосибирск: ИМ СО АН СССР, 1984. Вып. 106. С. 41–56.
- 3. Shadrin A. Yu. The L_{∞} -norm of the L_2 -spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture // Acta Math. 2001. V. 187, N 1. P. 59–137.
- 4. Волков Ю. С. О построении интерполяционных полиномиальных сплайнов // Вычислительные системы. Новосибирск: ИМ СО РАН, 1997. Вып. 159. С. 3–18.
- 5. Волжов Ю. С. Вполне неотрицательные матрицы в методах построения интерполяционных сплайнов нечётной степени // Матем. труды. 2004. Т. 7, № 2. С. 3–34. Перевод: Volkov Yu. S. Totally positive matrices in the methods for constructing interpolation splines of odd degree // Siberian Adv. in Math. 2005. V. 15, N 4. P. 96–125.
- 6. Волков Ю. С. Безусловная сходимость ещё одной средней производной для интерполяционных сплайнов нечётной степени // ДАН. 2005. Т. 401, № 5. С. 592–594.
- 7. Волков Ю. С. Условия ограниченности операторов сплайн-интерполяции. Новосибирск, 2006. 18 с. (Препринт № 167 / РАН. Сиб. отд-ние. Ин-т математики им. С. Л. Соболева).