ДОЛЯ МАТРИЦ С ВЕЩЕСТВЕННЫМ СПЕКТРОМ В СИМПЛЕКТИЧЕСКОЙ АЛГЕБРЕ

А. С. Кривоногов

Новосибирский государственный университет

Из работы [1] вытекает, что доля матриц с вещественным спектром в алгебре scex матриц $M_n(\mathbb{R})$ равна $1/2^{\frac{n(n-1)}{4}}$. В данной работе аналогичная задача решается для симплектической алгебры Ли

$$\mathfrak{sp}_{2n}(\mathbb{R}) = \{ X \in M_{2n}(\mathbb{R}) \mid X^{\top}J + JX = 0 \},$$

где
$$J = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix},\, I$$
 — единичная матрица порядка $n.$

Пусть $\|X\|_2$ — стандартная евклидова 2-норма на $M_{2n}(\mathbb{R}), B_{2n}(r) = \{X \in \mathfrak{sp}_{2n}(\mathbb{R}) \mid \|X\|_2 \leqslant r\}$ — евклидов шар радиуса r с центром в нуле в алгебре Ли $\mathfrak{sp}_{2n}(\mathbb{R})$ и $R_{2n}(r) = \{X \in \mathfrak{sp}_{2n}(\mathbb{R}) \mid Spec(X) \subset \mathbb{R}, \|X\|_2 \leqslant r\}$ — множество матриц с вещественным спектром из шара $B_{2n}(r)$. Число

$$P_{2n} = \lim_{r \to \infty} \frac{\operatorname{vol} R_{2n}(r)}{\operatorname{vol} B_{2n}(r)}$$

считаем по определению долей матриц с вещественным спектром в алгебре Ли $\mathfrak{sp}_{2n}(\mathbb{R}).$

Теорема.

$$P_{2n} = \frac{\left(\frac{n^2+n}{2}\right)!}{\prod_{k=1}^{n-1} k^{n-k}} \cdot \frac{1}{2^{\frac{n}{2}-1}} \cdot \mathfrak{I}_n,$$

где

$$\mathfrak{I}_n = \int \cdots \int \prod_{\substack{x_1 + \dots + x_n \leqslant 1 \\ x_1 > \dots > x_n > 0}} \prod_{1 \leqslant i < j \leqslant n} (x_i - x_j) dx_1 \dots dx_n.$$

Доказательство теоремы основано на подсчете якобиана параметризации множества $R_{2n}(r)$, связанной с аналогом теоремы Шура для матриц из $\mathfrak{sp}_{2n}(\mathbb{R})$, а также вычислении объема максимальной компактной подгруппы группы Ли $Sp_{2n}(\mathbb{R})$.

При любом данном n интеграл \mathfrak{I}_n можно вычислить точно. Результаты вычислений позволяют предположить, что $P_{2n}=1/2^{\frac{n^2-2}{2}}$ при $n\geqslant 2$. Гипотеза проверена при $n\leqslant 7$.

^{1.} A. Edelman, The probability that a random real Gaussian matrix has k real eigenvalues, related distributions, and the circular law // J.Multivariate Anal., 1997, vol. 60, p. 203–232

 $ext{\it H}$ аучный руководитель — к.ф.-м.н., проф. $ext{\it H} \Gamma ext{\it Y} \ ext{\it B.A.}$ Чуркин