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Overview
Mainly about automorphisms of finite groups, but also some infinite (especially nilpotent).

1. Survey

– Results on fixed-point-free and almost fixed-point-free automorphisms

– Open problems

2. Some methods of representation theory

– Automorphisms as linear transformations

– Clifford’s theorem

– Hall–Higman–type theorems

– Automorphism of prime order with fixed-point subgroup of given rank

3. Lie ring methods

– Automorphisms of Lie rings

– Associated Lie rings

– Method of graded centralizers

– Automorphism of order p acting on a finite p-group

– Frobenius groups of automorphisms with fixed-point-free kernel

– Lazard Lie algebra

4. Baker–Campbell–Hausdorff formula

– Mal’cev correspondence

– Lazard correspondence

– Automorphism of order pn acting on a finite p-group

5. Elimination of operators by nilpotency

Philosophical remark:
Results modulo other parts of mathematics:

• simple or non-soluble groups are often studied modulo soluble groups: for example,

determine simple composition factors,

or the quotient G/S(G) by the soluble radical;

• soluble modulo nilpotent: for example,

bounding the Fitting height, or p-length;

• nilpotent modulo abelian or “centrality”: typically,

bounding the nilpotency class or derived length;

• ...finite abelian modulo number theory?

Example: Restricted Burnside Problem

If a finite group G is d-generated and has exponent n, then |G| 6 f(d, n).

Classification⇒ reduction to soluble.

Hall–Higman paper⇒ reduction to p-groups.

Zel’manov’s reduction for p-groups to Lie algebras.

Zel’manov’s theorem on Engel Lie algebras.

Part 1. Survey on fixed-point-free and almost fixed-point-free automorphisms



Some definitions and notation:
CG(ϕ) = {g ∈ G | ϕ(g) = g} fixed-point subgroup (or subring)

Fixed-point-free: CG(ϕ) = 1 (for Lie rings: CL(ϕ) = 0).

Fitting series: F1(G) := F (G) Fitting subgroup
(largest normal nilpotent subgroup),

Fi+1(G) full inverse image of F (G/Fi(G)) in G.

Fitting height (=nilpotent length) is the least l such that Fl(G) = G in a soluble finite group G.

α(n) = the number of (not necessarily distinct) primes whose product is n: α(n) =
∑
ki if n =

∏
pkii . For

brevity, α(A) = α(|A|).

G has rank 6 r if every subgroup can be generated by r elements.

(a, b, . . . )-bounded means bounded above in terms of a, b, . . .

Fixed-point-free and almost fixed-point-free automorphisms
If a finite group (or a Lie ring) admits a fixed-point-free automorphism, then often the group (Lie ring) must

be soluble or nilpotent, sometimes with bounds for the derived length or nilpotency class, or of bounded Fitting
height.

Studying an almost fixed-point-free automorphism ϕ ∈ AutG means obtaining restrictions on G depending on
the fixed-point subgroup CG(ϕ) and the order of ϕ.

It is natural to expect that if CG(ϕ) is “small”, then properties ofG are correspondingly close to the case where
ϕ is fixed-point-free: “almost” soluble, or nilpotent, or of bounded Fitting height.

Many results are also valid for non-cyclic (almost) fixed-point-free groups of automorphisms A 6 AutG.

Example: fixed-point-free automorphism of prime order
ϕ

CG(ϕ)

G

|ϕ| = p
prime
CG(ϕ) = 1

|ϕ| = p prime

|CG(ϕ)| = m

|ϕ| = p prime
p - |G| for insol. G
r(CG(ϕ)) = r
of given rank

finite nilpotent
Thompson, 59

|G/S(G)| 6 f(p,m)
Fong+CFSG, 76

r(G/S(G)) 6 f(p, r)
EKh+Maz+CFSG, 06

+soluble nilpotent
Clifford, 30s

|G/F (G)| 6 f(p,m)
Hartley+Meixner,
Pettet, 81

G > N > R > 1,
r(G/N), r(R)6f(p, r),
N/R nilpotent
EKh+Maz, 06

+nilpotent class 6 h(p)
Higman, 57
Kostrikin–
Kreknin, 63

G > H ,
|G : H| 6 f(p,m),
H nilp. class 6g(p)
EKh, 90

G > N ,
r(G/N) 6 f(p, r),
N nilp. class 6 g(p)
EKh, 08

Lie ring same,
by same

same, EKh, 90
ideal, Mak. 2006

same

Automorphisms of arbitrary (composite) coprime order



ϕ

CG(ϕ)
G

|ϕ| = n
coprime
CG(ϕ) = 1

|ϕ| = n
coprime
|CG(ϕ)| = m

|ϕ| = n
coprime
r(CG(ϕ)) = r

finite soluble
CFSG

|G/S(G)| 6 f(n,m)
Hartley, 92 +CFSG

r(G/S(G)) 6 f(n, r)
EKh+Maz+CFSG, 06

+soluble Fitting
height 6 α(n)
Shult, Gross,
Berger

|G/F2α(n)+1(G)|
6 f(n,m)
Turull+
Hartley+Isaacs

r(G/F4α(n)(G)) 6 f(n, r)
(Thompson+)
EKh+Maz, 06

+nilpotent der. length
bounded??
only |ϕ| = 4
Kovács, 61

??????
only |ϕ| = 4
EKh+Mak, 96, 06

??????

Lie
algebra

soluble of
d.l.6 k(n)
Kreknin, 63

L > N ideal
codimN 6 f(n,m)
N sol. d.l. 6 g(n)
EKh+Mak, 04

same as
←

Automorphisms of arbitrary (composite) non-coprime order
ϕ |ϕ| = n non-coprime

G CG(ϕ) = 1 |CG(ϕ)| = m r(CG(ϕ)) = r

finite soluble
Rowley, 95 +CFSG

|G/S(G)| 6 f(n,m)
Hartley, 92 +CFSG

r(G/S(G))→∞
even n prime

+soluble Fitting height
6 10 · 2α(n)
Dade, 69

6 α(n)?? (proved
in some cases,
Ercan, Güloğlu)
polynom. in α(n)??
linear in α(n)??

Is |G/Ff(α(n))(G)|
6 f(n,m)??
(proved for |ϕ| = pk

Hartley+Turau, 87)
(open even for |ϕ| = 6)

At least,
is Fitting height
6 f(n,m)??

Bell-Hartley
examples for
A non-nilp.

for A non-cyclic
nilp.???

+nilpotent Is der. length
bounded??

same ?? (only |ϕ| = 4
EKh+Makar. 96, 06)

??

Lie
algebra

soluble
der. length 6 k(n)
Kreknin, 63

ideal codim 6 f(n,m)
solub. d.l. 6 g(n)
EKh+Makar. 04

same as
←

“Modular situation”
... is when a finite p-group P admits an automorphism ϕ of order pn

(which cannot be fixed-point-free);

aim: restrictions on P in terms of |ϕ| and |CG(ϕ)|.
(As we shall see, rank of P is easily bounded in terms of |ϕ| and rank of CG(ϕ).)

Various Lie ring methods and Higman–Kreknin–Kostrikin theorems were very successfully applied (also to
pro-p-groups of given coclass) in the papers of Alperin, Jaikin-Zapirain, Khukhro, Medvedev, Shalev, Shalev–
Zel’manov.

(Some of these later.)

Frobenius groups of automorphisms
Frobenius group FH with kernel F and complement H
FH 6 AutG with fixed-point-free kernel: CG(F ) = 1.

CG(F ) = 1 already⇒ G soluble by Belyaev–Hartley using CFSG.

and Fitting height of G bounded in terms of α(|F |)
(Thompson, Shult, Gross, Berger, ... , Kurweil, Turull).

New approach: bounding G in terms of CG(H) and H
(recent results by EKh–Makarenko–Shumyatsky):

Order and rank of G — easy.

Fitting height of G = Fitting height of CG(H)



If CG(H) is nilpotent and F cyclic, then G is nilpotent of class bounded in terms of the class of CG(H) and
|H|

(not true if F is not cyclic).

When F is cyclic, the exponent of G is bounded in terms of exponent of CG(H) and |FH|.

Open problems
In accordance with our philosophy, problems in “layers”:

Modulo CFSG many problems nowadays are reduced to soluble groups.

For soluble groups modulo nilpotent, problems are to bound the Fitting height, or p-length, even if the question
is on exponent, say. Requires methods of representation theory.

For nilpotent groups further problems of bounding derived length, nilpotency class, exponent, etc.

Similar problems for Lie rings (algebras) – often easier, but some still open, too.

Open problems for soluble modulo nilpotent

For (almost) f-p-f automorphisms of coprime order a lot is already known. Further questions remain for non-
slouble groups of autom., though. Some progress by Turull, Kurzweil.

But some major important problems remain open in the non-coprime case.

Open problems: centralizer of an element
Kourovka 13.8(a), Hartley’s problem, included by Belyaev:

Almost fixed-point-free automorphism of non-coprime order
Suppose that ϕ is an automorphism of a soluble group G. Is the Fitting height of G bounded in terms of |ϕ| and
|CG(ϕ)|?

Equivalent: element g ∈ G, Fitting height in terms of |CG(g)|?
Bounds (and nice) are known for |ϕ| = pk being a prime-power (Hartley–Turau), basically because of easy

reduction to coprime case.

But even the case |ϕ| = 6 is open.

Open problems: non-coprime
Recall

Dade’s theorem
Suppose thatA is a Carter (nilpotent self-normalizing) subgroup of a finite soluble groupG. Let |A| be the product
of α(A) primes (not necessarily different). Then Fitting height of G is bounded by a function of α(A).

In Dade’s paper the function is exponential.

Better bounds in Dade’s theorem
Find a polynomial function of α(A) bounding the Fitting height of G.

Find a linear function of α(A) bounding the Fitting height of G.

Open problems: non-coprime

Special case of better bounds in Dade’s theorem for fixed-point-free group of automorphisms
Suppose that a soluble group G admits a nilpotent fixed-point-free group of automorphisms A. Find a polynomial
function of α(A) bounding the Fitting height of G.

Find a linear function of α(A) bounding the Fitting height of G.

Known only for some special cases, for example, A abelian of square-free odd order (where Turull’s bound
5α(A) was improved by Ercan and Güloğlu to best-possible α(A)).

But all is known for coprime (|A|, |G|) = 1, even for A soluble group of automorphisms (Thompson–...–
Kurzweil–...–Turull).

Examples of Bell–Hartley: any non-nilpotent soluble group can act fixed-point freely on groups of unbounded
Fitting height.



Open problems: non-coprime cyclic

Special case of Dade’s th’m for a fixed-point-free automorphism
Suppose that a soluble group G admits a fixed-point-free automorphism ϕ. Find a polynomial function of α(ϕ)
bounding the Fitting height of G.

Find a linear function of α(ϕ) bounding the Fitting height of G.

Known only in some special cases (Ercan, Güloğlu, even with best-possible bound α(ϕ)).

Open problems: rank, non-coprime

Suppose a finite soluble group G admits a nilpotent group of automorphisms A (of non-coprime order).

Rank analogue
Is there a function f(α(A)) such that the rank of G/Ff(α(A)) is bounded in terms of |A| and the rank of CG(A)?

The same question for A cyclic.

(Recall, Bell–Hartley examples for A non-nilpotent non-coprime...)

Open problems: for coprime with rank

Theorem (Khukhro–Mazurov, 06). Suppose a finite group G admits a soluble group of automorphisms A of co-
prime order. Then

(a) the rank of G/F4α(A)−1(G) and

(b) the order of G/F5·(4α(A)−1)/3(G)

are bounded in terms of |A| and the rank of CG(A).

Better bounds
Can exponential functions 4α(A) here be replaced by

linear functions of α(A)?

(as in best possible results in terms of |CG(A)|).

Better bounds
The same question for A cyclic.

Some other Hall–Higman–type problems

Wilson’s problem 9.68 in Kourovka
Let V be a proper variety of groups. Is there a bound on the p-lengths of the finite p-soluble groups whose Sylow
p-subgroups are in V?

So far, Hall–Higman paper: for V being varieties of soluble groups of given derived length, of nilpotent groups
of given class, of groups of given exponent. Apparently, also n-Engel groups.

One of simplest open cases: V given by law [x, y]p
n

= 1.

Just recently some progress for [x, y]p = 1.

Some other Hall–Higman–type problems

Shumyatsky’s problem 17.126 in Kourovka
Let G be a finite soluble group satisfying the identity [x, y]n = 1; is the Fitting height of G bounded in terms of n?

Shumyatsky proved this in the case n = pk (actually, then even [G,G] is a p-group).

Would provide reduction to nilpotent p-groups for Shumyatsky’s problem: if [x, y]n = 1 in a residually finite
group, then [G,G] is locally finite.

For nilpotent groups Shumyatsky developed technique based on RBP and Lie ring methods. For a change, it is
reduction to nilpotent case that is still missing.

More Hall–Higman–type problems

Grishkov’s problem on groups with triality
??

Important for finishing solution of Restricted Burnside Problems for Moufang loops??.

Again, here it is reduction to nilpotent case that is still missing, while Grishkov and Zel’manov already have
results for “nilpotent case”.



Recall Kreknin’s theorem for Lie rings

Kreknin’s theorem
Suppose that a Lie ring L admits a fixed-point-free automorphism ϕ ∈ AutL of finite order n: CL(ϕ) = 0. Then
L is soluble of n-bounded derived length (actually 6 2n − 2).

Method of proof discussed later.

Open problems for nilpotent groups

Analogue of Kreknin’s theorem for (nilpotent) groups
Suppose that ϕ ∈ AutG is fixed-point-free: CG(ϕ) = 1.
Is the derived length of G bounded in terms of |ϕ|?
. . . if in addition (|G|, |ϕ|) = 1?

Already reduced to G nilpotent. Only known for |ϕ| = 4 or a prime.

Associated Lie ring method, L(G) =
⊕
γi/γi+1, does not work here (as it does for nilpotency in Higman’s

theorem), because the derived length is not preserved.

(Other Lie ring methods do work in special situations: for example, for locally nilpotent torsion-free groups, or
polycyclic groups. Plus, Kreknin’s theorem successfully applied for finite p-groups with automorphisms of order
pn.)

Open problems for nilpotent groups
Proving (or refuting??!!) an analogue of Kreknin’s theorem obviously takes precedence before other open

problems for nilpotent groups with almost fixed-point-free automorphisms, coprime or not.

Frobenius groups of automorphisms
Frobenius group FH with kernel F and complement H
FH 6 AutG with fixed-point-free kernel: CG(F ) = 1.

Recall: G is soluble, bounds in terms of F ....

New approach: bounding G in terms of CG(H) and H .

Fitting height of G = Fitting height of CG(H), so now about nilpotent.

Theorem (EKh–Makarenko–Shumyatsky, 10). If FH is metacyclic, CG(F ) = 1, and CG(H) is nilpotent, then
the nilpotency class of G is bounded in terms of |H| and the nilpotency class of CG(H).

Question
Is the dependence on |H| necessary?

So far, only examples (Antonov–Chekanov) with class of G greater than that of CG(H).

Frobenius group of automorphisms: exponent

Theorem (Khukhro–Makarenko–Shumyatsky, 10). Suppose that a finite group G admits a metacyclic Frobenius
group FH of automorphisms with kernel F and complement H such that CG(F ) = 1. Then the exponent of G is
bounded in terms of |FH| and the exponent of CG(H).

Question
Is the dependence on |F | or |H| necessary?

Mazurov’s problem 17.72(b) in Kourovka Notebook:
If GFH is a double Frobenius group, is the exponent of G bounded in terms of |H| and the exponent of CG(H)?

Examples (Antonov–Chekanov) show that exponent of G may be greater than that of CG(H).

Exponent, continued

Question
Is metacyclic condition necessary in the above exponent theorem?

Only for FH ∼= A4 a similar result was proved by Shumyatsky, 2011.



Frobenius group of automorphisms: derived length
Metacyclic Frobenius group FH with kernel F and complement H
FH 6 AutG with fixed-point-free kernel: CG(F ) = 1.

Problem on derived length:
Is the derived length of G bounded in terms of |H| and the derived length of CG(H)?

Already reduced to case of G nilpotent. Examples show “metacyclic” essential.

This question is open even if GFH is a 2-Frobenius group.

(For the derived length, it is unclear how to reduce to Lie rings, since the associated Lie ring may have smaller
derived length than G.)

The same question on derived length is open even for Lie rings.

Similar questions can be asked for other properties and parameters of a finite group G with a Frobenius group
of automorphisms FH such that CG(F ) = 1: if CG(H) is supersoluble? satisfies other laws, like Engel?

Open problems for Lie rings and algebras

Definition. Let k(n) be Kreknin’s function bounding the derived length of a Lie ring with a fixed-point-free
automorphism of order n.

Kreknin’s bound: k(n) 6 2n − 2.

Better bounds for Kreknin’s function
Find a polynomial bound for k(n).

Is there a linear function of n bounding k(n)?

Open problems: Higman function

Definition. Let h(p) be Higman’s function bounding the nilpotency class of a Lie ring with a fixed-point-free
automorphism of prime order p.

Kreknin+Kostrikin bound: h(p) 6
(p− 1)k(p) − 1

p− 2
≈ p2p

Better bounds for Higman’s functions
Find a polynomial function of p bounding above h(p).

Is h(p) = (p2 − 1)/4?

Higman’s examples show h(p) > (p2 − 1)/4.

Conjecture h(p) = (p2 − 1)/4 confirmed for p = 3, 5, 7, 11.

Frobenius group of automorphisms
Lie ring L admits a metacyclic Frobenius group FH 6 AutL with kernel F and complement H , with fixed-

point-free kernel: CL(F ) = 0.

Problem on derived length:
Is the derived length of L bounded in terms of |H| and the derived length of CL(H)?

Examples show that metacyclic is essential.

2. Some methods of representation theory

Group language↔ linear transformations
Let V be an elementary abelian p-group. Then V can be regarded as a vector space over Fp: addition a+ b :=

ab, scalar multiplication by k ∈ {0, 1, . . . , p− 1} is ka := ak.

Let this V = N/M be a normal section of a group G (i.e. both N,M are normal). Then any element g ∈ G
induces by conjugation a linear transformation ḡ ∈ HomFp(V ), which we denote by right operators: vḡ := vg

(often bar is omitted = vg).

If in addition V is also ϕ-invariant for ϕ ∈ AutG, then also ϕ ∈ HomFp(V ).

Representation theory applies. One of advantages: extending the ground field, eigenvectors, etc.



Group language↔ linear transformations
For example, [v, g] = v−1vg = −v + vḡ = v(ḡ − 1);
then [[v, g], g] = v(ḡ − 1)2, etc.

Let |ϕ| = n. Free k〈ϕ〉-module: V = V1 ⊕ · · · ⊕ Vn
with Viϕ = Vi+1 and Vnϕ = V1.
Clearly, then CV (ϕ) 6= 0 ( = “diagonal”).

(Free modules imply other nice properties – later.)

Recall Maschke’s theorem: if (|G|, |V |) = 1, then every G-invariant subspace U has G-invariant complement
W s.t. V = U ⊕W .

Irreducible nilpotent linear group has cyclic centre: if V is minimalG-invariant forG nilpotent, thenZ(G/CG(V ))
is cyclic.

If in addition over splitting field forG, thenZ(G/CG(V )) is represented by scalar transformations, soZ(G/CG(V )) 6
Z(GL(V )).

p-element in characteristic p
Let g ∈ GL(V ) in char. p such that |g| = pn.

gp
n

= 1⇒ gp
n − 1 = 0⇒ g is a root of Xpn − 1.

But in char. p we have Xpn − 1 = (X − 1)p
n

.
So all eigenvalues of g are 1.
So no need to extend ground field — there is a Jordan basis (even over Fp), where matrix of g is block-diagonal

with blocks

J =


1 1

1 1
. . . . . .

1 1
1


Powers are easily computed:

Jk =


1
(
k
1

) (
k
2

)
1

(
k
1

) . . .
. . . . . .

1
(
k
1

)
1


To have |g| = pn, by divisibility argument,
all sizes must be 6 pn × pn, with at least one > pn−1 × pn−1.

Clearly, each block contributes exactly 1 to dimCV (g).
As a result, dimV 6 pn · dimCV (g).

Corollary. If ϕ is an automorphism of order pn of a finite p-group P , then the rank of P is bounded in terms of
pn and the rank of CV (g).

Choose maximal abelian normal A 6 P 〈ϕ〉,
then V = Ω1(A) same rank as A.

Rank of V = dimV is bounded as we saw above.

Hall–Merzlyakov–Gorchakov lemma: the rank of a p-group of automorphisms of an abelian p-group of rank r
is bounded in terms of r. Apply to P/(A ∩ P ) acting faithfully on A.

Clifford’s theorem

Theorem (Clifford, 1937). Let V be an irreducible kG-module, and N a normal subgroup of G. Then V =
W1 ⊕ · · · ⊕Wn, where each Wi is the sum of all isomorphic irreducible kN -submodules of a given type, called
Wedderburn homogeneous components, which are transitively permuted by G.

Example of application of Clifford’s theorem

Theorem (Folklore). If a finite soluble group G admits a fixed-point-free automorphism ϕ of prime order q, then
G is nilpotent.



Clearly, (q, |G|) = 1 (otherwise ϕ would have nontrivial fixed point in Sylow q-subgroup of G, which could
be chosen ϕ-invariant: include ϕ in a Sylow q-subgroup of G〈ϕ〉 and intersect with normal subgroup G).

Hence ϕ is f-p-f on all invariant sections by well-known properties of coprime action.

Sufficient: G = Op′,p(G) for every prime p.
Suppose G 6= Op′,p(G). Known: Ḡ := G/Op′,p(G) faithful on V := Op′,p(G)/Φ (where Φ is preimage of

Frattini of Op′,p/Op′).

Since Op(Ḡ) = 1, a minimal ϕ-invariant abelian R 6 Ḡ is elementary abelian r-group for r 6= p.
Consider the linear action of R〈ϕ〉 on V regarded as a vector space. Aim: contradiction with CG(ϕ) = 1.

Extend the ground field to algebraically closed k. Choose an irreducibleR〈ϕ〉 submoduleW whereR is nontrivial.

Apply Clifford’s theorem with respect to R:
W = W1 ⊕ · · · ⊕Wn.

Since ϕ permutes the Wi transitively, either n = 1 or n = q.

If n = 1, then W is a homogeneous kR-module, but R abelian⇒ acts scalarly⇒ ϕ centralizes R/CR(W )⇒
ϕ has a fixed point in R

since action is coprime⇒ ϕ has a fixed point also in G.

If n = q, then W is a free 〈ϕ〉-module and we get a “diagonal” fixed point in W (recall: for 0 6= w ∈ W1 the
sum over orbit: 0 6= w+wϕ+wϕ2 + · · ·+wϕq−1 ∈ CW (ϕ)). Fixed point independent of the field⇒ CV (ϕ) 6= 0
⇒ ϕ has fixed point in G, contradiction.

Frobenius group of automorphisms with f-p-f kernel

Lemma. Suppose that V is a vector space over any field k admitting a finite Frobenius group of linear transfor-
mations FH with kernel F and complement H such that CV (F ) = 0. Then V is a free kH-module.

Reduction to |F | coprime to characteristic p:
F = Fp × Fp′ . Must have CV (Fp′) = 0 — otherwise Fp has nontrivial fixed points on CV (Fp′) (which is

Fp-invariant); then 0 6= CCV (Fp′ )
(Fp) = CV (F ).

May assume ground field k algebraically closed (condition CV (F ) = 0 is preserved, and it suffices to prove
that V is a free H-module over larger field: by Deuring–Noether theorem, as being free module means having
basis permuted by H regularly).

V = U1 > U2 > · · · > Ul > Ul+1 = 0,

where each factor Ui/Ui+1 is an irreducible kFH-module.
It is sufficient to prove that each factor U = Ui/Ui+1 is a free kH-module.

Since action of F is coprime, we also have CU (F ) = 0.

Clifford’s theorem with respect to F :
U = W1 ⊕ · · · ⊕Wt.

Wedderburn components Wi transitively permuted by H .
Let H1 be the stabilizer of W1 in H acting on {W1, . . . ,Wt}.
If H1 = 1, then U is a free kH-module.

But if H1 6= 1, then H1 centralizes the centre Z(F/CF (W1)) represented on W1 by scalar linear transforma-
tions.

This centre is nontrivial, as F/CF (W1) is nilpotent.
Then we obtain nontrivial fixed points of H1 on F — impossible in Frobenius group FH .

Frobenius groups of automorphisms
Finite group G admitting a Frobenius group of automorphisms FH 6 AutG with kernel F and complement

H ,
such that CG(F ) = 1. (by Belyaev–Hartley + CFSG, G is soluble)

Easy corollaries of “freedom lemma” for order and rank:

As we saw, all FH-invariant normal elementary abelian sections
are free H-modules⇒ |G| = |CG(H)||H|;
and just a bit more work: rank of G is bounded in terms of rank of CG(H) and |H|.

Other results EKh–Makarenko–Shumyatsky are more difficult: the Fitting height, nilpotency class, expo-
nent.

Bounding nilpotency class and exponent are by various Lie ring methods, including similar results for Lie rings
with such Frobenius groups of automorphisms — later.



Hall–Higman type theorems
Example: bounding Fitting height of a finite soluble groupGwith a fixed-point-free automorphism ϕ of prime-

power order qn.

Again, (q, |G|) = 1; so ϕ is f-p-f on all invariant sections.

Idea: if ϕ is not faithful on G/F (G), then induction on |ϕ| applies to G/F (G).

In most cases, if ϕ is faithful on G/F (G), then CF (G)(ϕ) 6= 1. “Most cases” have exceptions, but these are
quite constrained and can be controlled by Hall–Higman–type theorems.

Since F (G) =
⋂
Op′,p(G), we can assume ϕ is faithful on one of Ḡ = G/Op′,p(G) (for if [ϕq

n−1

, G] 6

Op′,p(G) for all p, then [ϕq
n−1

, G] 6
⋂
Op′,p(G) = F (G)).

Linear action of Ḡ〈ϕ〉 on elementary abelian p-group V = Op′,p(G)/Φ,
extend ground field; aim: CV (ϕ) 6= 0, which would be a contradiction.

Application of Clifford’s theorem
Minimal normal ϕ-invariant R of Ḡ, where ϕq

n−1 6= 1. Known: R is a special r-group for some prime r:
either elementary abelian,

or nilpotent of class 2 with Z(R) = [R,R] = Φ(R).

If R is abelian, then R〈ϕ〉 is Frobenius and as before we arrive at free 〈ϕ〉-submodule⇒ a fixed point of ϕ.

Hall–Higman–type theorems for class 2 case: basically, a free 〈ϕ〉-submodule still exists with a few very
constrained exceptions.

First apply Clifford’s theorem — induction reduces to the case of one W = W1. Then R an extra-special
r-group.

Lemma (“non-modular Hall-Higman”). Let G be a group of linear transformations acting irreducibly on a vector
space V over an algebraically closed field k of characteristic prime to |G|. Assume G = RQ, where R / G, R
is extra-special of order r2t+1, Q = 〈g〉 is cyclic of order qn, and Q acts faithfully and irreducibly on R/R′ and
trivially on R′. Then either

(a) the minimal polynomial of g on V is Xqn − 1
(means there is a free k〈g〉-submodule⇒ fixed point)

or

(b) minimal polynomial of g on V is (Xqn − l)/(X − 1) and rt = qn − 1.

(b) is called exceptional case.

For example, if |G| and q are odd, only (a) possible.

Rank analogue of Hartley–Meixner–Pettet theorem

Theorem (Khukhro–Mazurov, 06). If a finite soluble group G has an automorphism ϕ of prime order q with
CG(ϕ) of rank r, then G has characteristic subgroups G > N > R such that N/R is nilpotent and both G/N
and R have (q, r)-bounded rank.

“Soluble” can be dropped if (q, |G|) = 1 (using CFSG), but there are examples with non-coprime with
|G/S(G)| → ∞.

Later: also nilpotency class of N/R is q-bounded.

Induction plus Thompson-64 give consequences for soluble A 6 AutG of coprime order with given rank of
CG(A).

In contrast to Hartley–Meixner–Pettet
(where |G/F (G)| 6 f(q, |CG(ϕ))|),
examples show that here R is unavoidable.

R unavoidable in our theorem: CG(ϕ) of rank r ⇒ G
b.r.
> N

nilp

> R
b.r.
> 1

Example. Let p1, p2, . . . , pn be distinct primes > 7.
For each i, let Ei be elementary abelian group of order p6

i

AutEi contains Frobenius group Fi with kernel Ai of order 7 and cyclic complement 〈Bi〉 of order 6 such that
Ai is fixed-point-free on Ei.

Consider (E1 o F1)× · · · × (En o Fn).
Let b = b1 · · · bn and G = 〈b2, Ei, Ai | i = 1, . . . n〉.
b3 induces automorphism ϕ of G of order q = 2.
Then CG(ϕ) has rank 3.

But both the rank of G/F (G) and the rank of any normal subgroup with nilpotent quotient is equal to n.



Initial reductions in the proof
We deal only with soluble case
(by CFSG, if (|ϕ|, |G|) = 1, then G/S(G) is of bounded rank).

Theorem (Khukhro–Mazurov, 06). If a finite soluble group G has an automorphism ϕ of prime order q with
CG(ϕ) of rank r, then G has characteristic subgroups G > N > R such that N/R is nilpotent and both G/N
and R have (q, r)-bounded rank.

Easy reduction to G of coprime order.
So we assume from the outset that (|G|, q) = 1.

Non-modular Hall–Higman–type theorem
Recall “non-modular” Hall–Higman–type lemma in our case:

Lemma (“H-H-Lemma”). Let T o 〈ϕ〉, where T is a t-subgroup and |ϕ| = q is a prime 6= t. Suppose that
T = [T, ϕ] 6= 1, and T/Z(T ) is abelian of exponent t. If T o 〈ϕ〉 acts faithfully and irreducibly on a vector space
V over a splitting field of characteristic 6= t, q, then either

(a) CV (ϕ) 6= 0 and dimV = q · dimCV (ϕ) or

(b) CV (ϕ) = 0, the group T is extraspecial, [Z(T ), ϕ] = 1, the order |T | is bounded in terms of q, t = 2, and
q = tm + 1 for some positive integer m.

Part (b) — “exceptional case”.

“Weak” bound for Fitting height, in terms of q and r

Proposition. The Fitting height of G is (q, r)-bounded.

Proved by using H–H–type lemma and standard tools, like Kolchin–Mal’cev theorem.

aim: STRONG (bounded rank)–nilp–(bounded rank)
Already have: Fitting height of G is (q, r)-bounded.

So we can use induction on the Fitting height.

Characteristic from normal
In our induction on the Fitting height,

great help: “turning” normal subgroups into characteristic ones:

Theorem (Khukhro–Mazurov, 06). If a finite soluble group G has normal subgroups G > N > R such that N/R
is nilpotent and both G/N and R have rank 6 r, then G has characteristic subgroups G > N1 > R1 such that
N1/R1 is nilpotent and both G/N1 and R1 have r-bounded rank.

This theorem makes it possible to reduce our induction on the Fitting height just to the case G = F2(G) (in a
typical case).

Hall–Higman–type theorems combined with powerful p-groups
We shall see in detail a special but typical non-exceptional case, to see how Hall–Higman–Lemma is combined

with powerful p-groups.

Powerful p-groups

Definition. A finite p-group P is powerful if [P, P ] 6 P p for p 6= 2,
or [P, P ] 6 P 4 for p = 2.

Theorem (Lubotzky–Mann, 87). (a) If a powerful p-group P is generated by d elements, then the rank of P is at
most d and P is a product of d cyclic subgroups.

(b) Any finite p-group of rank r contains a characteristic powerful subgroup of index at most pr(log2 r+2).

Corollary. If a finite p-group has rank r and exponent e, then its order is at most ef(r) for some r-bounded
number f(r).

Proof: By part (b), the group can be assumed to be a powerful p-group; part (a) completes the proof.



Typical non-exceptional case
γi(X) lower central series; γ∞(G) =

⋂
i γi(X) nilpotent coradical.

Proposition. Suppose that a finite soluble q′-group G admits an automorphism ϕ of prime order q such that
CG(ϕ) has rank r. Suppose that G = PT , where P = F (G) is a p-subgroup and T = [T, ϕ] is a t-subgroup,
where p, q, t are distinct primes and q 6= 2 6= t. Then γ∞(G) has (q, r)-bounded rank.

In the theorem, R = γ∞(G)

Remark: may look as if even G > R > 1 with R of bounded rank and G/R nilpotent – but in general need
reductions from G to [G,ϕ], and from G to Oq′ , so a bit of bounded rank on top appears (and also due to other
reasons).

P is (q, r)-boundedly generated
γ∞(G) = [P, T ] = [P, T, T ] = · · · , so may assume P = [P, T ].

Lemma. P is generated by (q, r)-boundedly many elements,
that is, rank (= dim) of V = P/Φ(P ) is (q, r)-bounded.

Proof: V = V1 ⊃ V2 ⊃ · · · ⊃ 0, with FpT 〈ϕ〉-irreducible Ui = Vi/Vi+1.

By Maschke’s theorem, [Ui, T ] = Ui for each i. In particular, T acts non-trivially on Ui.

Since [T, ϕ] = T , by non-exceptional H-H-Lemma dimUi 6 q · dimCUi(ϕ).

Since
∑
i dimCUi(ϕ) = dimCV (ϕ) 6 r, as a result we have

dimV =
∑
i

dimUi 6 q dimCV (ϕ) 6 qr,

so P is (q, r)-boundedly generated.

Powerful subgroup
The crucial step is to show that P has a powerful p-subgroup of bounded rank and ‘co-rank’. The construction

of a powerful subgroup is similar to a part of Shumyatsky-98 proof for q = 2.

Let M be some normal T 〈ϕ〉-invariant subgroup of P
(which we shall choose later).

Consider the quotient P = P/Mp (or P/M4 if p = 2); let the bar denote the images.

Since M = M/Mp (or M/M4) has exponent p (or 4), the order of the centralizer of ϕ in this group is at most
pf for some r-bounded number f = f(r).

Recall: P = P/Mp (or P/M4) and |CM (ϕ)| 6 pf

We denote by ζi(X) the upper central series.

Lemma. M 6 ζ2f+1(P ).

Proof: Consider the following central series of P :
M1 = M > M2 > M3 > · · · > 1, where Mi = [M,P , . . . ,P ] (i times;
we can simply write P instead ofP ).

All the Mi are normal and T 〈ϕ〉-invariant.

Let Vi = Mi/Mi+1. These are elementary abelian p-groups, regarded as FpT 〈ϕ〉-modules.

Whenever [Vi, T ] 6= 0 we have CVi(ϕ) 6= 0 by non-exceptional H-H-Lemma.

Since |CM (ϕ)| 6 pf , there can be at most f factors Vi with [Vi, T ] 6= 0.

Proving M 6 ζ2f+1(P )
Therefore for some k 6 2f + 1 we must have

both [Vk, T ] = 0 and [Vk+1, T ] = 0. In other words, we have

[[T,Mk], P ] 6 [Mk+1, P ] = Mk+2 and

[[Mk, P ], T ] = [Mk+1, T ] 6Mk+2.

By Three Subgroup Lemma:

[[P, T ],Mk] = [P,Mk] = Mk+1 6Mk+2.

Then, of course, Mk+1 = 1, since P is nilpotent: Mk+1 6 Mk+2 ⇒ [Mk+1, P ] 6 [Mk+2, P ], that is,
Mk+2 6Mk+3, and so on, = 1 in the end.

This means precisely that M 6 ζk(P ) 6 ζ2f+1(P ).



Recall: M 6 ζ2f+1(P ). Bounding rank of P
We now put M = γ2f+1(P ) ( = γ2f+1 for brevity).

Then [M,M ] 6 [γ2f+1(P ), ζ2f+1(P )] = 1, that is, [M,M ] 6 Mp (or [M,M ] 6 M4). Thus, M =
γ2f+1(P ) is a powerful p-subgroup of P .

The quotient P/γp2f+1 is then nilpotent of class 4f + 1 (since γ2f+1/γ
p
2f+1 6 ζ2f+1(P/γp2f+1) by above).

Since P is (q, r)-boundedly generated and P/γp2f+1 is nilpotent of class 4f + 1, the rank of P/γp2f+1 is
(q, r)-bounded.

In particular, rank of γ2f+1/γ
p
2f+1 is (q, r)-bounded, = rank of the powerful p-subgroup γ2f+1 by properties

of powerful p-groups.

As a result, the rank of P is (q, r)-bounded, as required.

Exceptional cases
Exceptional case of part (b) in H-H-Lemma obstructs extending the above arguments;

in particular, we can assume that q 6= 2.

...Certain reduction to the case where G = O2′, 2 with O2′ nilpotent.

To get rid of exceptional situations:

Let W be a ϕ-invariant Sylow 2-subgroup of G.

Idea: “push up” exceptional “bad” pieces of W ;

they only form a quotient of (q, r)-bounded rank.

Remaining ‘good’ part of G is then dealt with similarly to non-exceptional Proposition above.

Exceptional cases: “push-up”
Let V be the set of all G 〈ϕ〉-invariant sections V of O2′(G) that are G 〈ϕ〉-irreducible elementary p-groups

(for various p) such that CV (ϕ) = 1

Let K =
⋂
V ∈V CG(V ).

Exceptional part (b) of H-H-Lemma is used to show that G/K has (q, r)-bounded rank.

It remains to consider the action of K〈ϕ〉 on O2′(G).

Definition of K ensures that C(ϕ) 6= 1 in the sections that appear in these arguments – no exceptional situa-
tions, proceed virtually exactly as in Proposition above.

Arrive at γ∞(K) having (q, r)-bounded rank, which completes the proof.

Corollaries for A 6 AutG
Recall: |A| is a product of α(A) primes (not necessarily distinct).

Theorem (Mazurov–Khukhro, 06). Let A be a soluble group of automorphisms of a finite group G of coprime
order, (|A|, |G|) = 1. Then

(a) the rank of G/F4α(A)−1(G) and
(b) the order of G/F5·(4α(A)−1)/3(G)

are bounded in terms of |A| and the rank of CG(A).

By CFSG.... G/S(G) has bounded rank, so may assume that G is soluble.

Recall: if |A| and |G| are not coprime andA is not nilpotent, there are Bell–Hartley examples with CG(A) = 1
and the Fitting height of G is unbounded.

Recall open problem: without (|A|, |G|) = 1 for A nilpotent (as we know, true for |A| a prime).

Also open problem to improve functions to linear in α(A).

Another result for A of prime order
The theorem for A follows from the case of A = 〈ϕ〉 of prime order by a straightforward induction on α(A)

based on the classical theorem of Thompson, 64.

Although the previous “rank-nilp-rank” theorem for ϕ of prime order is “best-possible”, with just one nilpotent
bit, we also derived from it another “best-possible” result for A of prime order

(note: no coprimeness in parts (a), (b).)



Theorem (Khukhro–Mazurov, 06). If a finite soluble group G admits an automorphism ϕ of prime order q such
that CG(ϕ) has rank r, then

(a) for each prime p the quotient G/Op′,p(G) has (q, r)-bounded rank;
(b) G/F3(G) has (q, r)-bounded rank;
(c) if in addition q - |G|, then G/F4(G) has (q, r)-bounded order.

Examples show that
part (b) is best possible in the sense that the rank of G/F2(G) need not be bounded.

Thompson’s theorem
Thompson’s theorem of 1964 enables induction in the proof of a bound for the rank of G/F4α(A)−1(G).

Theorem (Thompson, 64). Let ϕ be an automorphism of prime order q of a finite soluble group G such that
q - |G|. Then F (CG(ϕ)) 6 F4(G).

Corollary. Let B be a soluble group of automorphisms of a finite soluble group G such that (|G|, |B|) = 1. Then
Fk(CG(B)) 6 Fk4α(B)(G) for every k.

(By straightforward induction on k and α(B))

Bounding rank of G/F4α(A)−1(G)
Here is how Theorem for A is derived from the case of A of prime order.

Recall: A soluble 6 AutG of coprime order. We need to
prove that rank of G/F4α(A)−1(G) is bounded in terms of |A| and the rank of CG(A).

Induction on α(A). For α(A) = 1, By Theorem (b) above, G/F3(G) has bounded rank.

For α(A) > 1, choose A1 normal of prime index q in A. Then C = CG(A1) admits 〈ϕ〉 = A/A1 of prime
order q with CC(ϕ) = CG(A).

By Theorem (b) above the rank of C/F3(C) is bounded in terms of r = r(CG(A)) and q.

By Thompson’s Corollary, F3(C) 6 F3·4α(A)−1(G); so the rank of the image of CG(A1) in G/F3·4α(A)−1(G)
is (q, r)-bounded.

By induction applied to this quotient and A1, rank of G/F4α(A)−1−1+3·4α(A)−1(G) = G/F4α(A)−1 is (q, r)-
bounded.

3. Lie ring methods

Lie rings and algebras
Recall: Lie ring L: additive group (L,+)
with Lie product (=bracket=multiplication) [x, y], which is

bilinear w.r.t. addition, anticommutative: [x, x] = 0,

satisfies Jacobi identity: [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

Lie algebra over a field k if it is also a vector space over k...

Automorphisms, ideals, soluble, nilpotent...

[A,B] = +〈[a, b] | a ∈ A, b ∈ B〉
γk(L) = [...[[L,L], L] . . . , L]; = 0 nilpotent of class k − 1

L(1) = [L,L], L(k+1) = [L(k), L(k)]

L(k) = 0 soluble of derived length k Examples:

Free Lie algebras similarly to free groups...

R3 with cross-product as Lie bracket: [x, y] := x× y.

Square matrices w.r.t. [A,B] = AB −BA.

Actually, every Lie algebra can be obtained from associative (noncommutative) algebraA asA(−) with [x, y] =
xy − yx.

If L is a Lie algebra with basis e1, e2, . . . , then by linearity only need structure constants [ei, ej ] =
∑
k Cijkek.

Not every set of Cijk defines a Lie algebra, but enough to check anti-commutativity and Jacobi for the ei.

Example: Witt Lie algebra (over Q):

basis: ei, i ∈ Z; structure constants: [ei, ej ] = (i− j)ei+j .
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G

|ϕ| = p
prime
CG(ϕ) = 1

|ϕ| = p prime

|CG(ϕ)| = m

|ϕ| = p prime
p - |G| for insol. G
r(CG(ϕ)) = r
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finite nilpotent
Thompson, 59

|G/S(G)| 6 f(p,m)
Fong+CFSG, 76
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EKh+Maz+CFSG, 06

+soluble nilpotent
Clifford, 30s
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EKh, 08
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ideal, Mak. 2006
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CG(ϕ) = 1
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CFSG
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Hartley, 92 +CFSG
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EKh+Maz+CFSG, 06

+soluble Fitting
height 6 α(n)
Shult, Gross,
Berger
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Turull+
Hartley+Isaacs

r(G/F4α(n)(G)) 6 f(n, r)
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EKh+Maz, 06
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bounded??
only |ϕ| = 4
Kovács, 61

??????
only |ϕ| = 4
EKh+Mak, 96, 06
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Lie
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soluble of
d.l.6 k(n)
Kreknin, 63

L > N ideal
codimN 6 f(n,m)
N sol. d.l. 6 g(n)
EKh+Mak, 04

same as
←

Automorphisms of Lie rings and algebras with few fixed points
As we saw in the bottom layer of those tables,
nice results Higman–Kreknin–Kostrikin for Lie rings with fixed-point-free automorphisms.

(Earlier Jacobson–Borel–Mostow for finite-dimensional, without bounds for nilpotency class or derived length.)

Also Khukhro–Makarenko results for Lie rings with almost fixed-point free automorphisms.

Yield corollaries for groups, although some problems also remain open.

Groups of automorphisms of Lie algebras and their fixed points
Bergman–Isaacs: G 6 AutA of associative algebra A of characteristic coprime to |G| such that CA(G) = 0.

Then A is nilpotent.

Other results, .... Kharchenko.

For Lie algebras not true for non-cyclic G:
simple 3-dim. L admits noncyclic G of order 4 with CL(G) = 0.

But Bakhturin–Zaitsev–Linchenko: G 6 AutL of a Lie algebra L of characteristic coprime to |G| such that
CL(G) satisfies a polynomial identity. Then L also satisfies a polynomial identity.

Also finds application in group theory.

Analogues of eigenspaces
Suppose A is an abelian group, in additive notation,
and ϕ ∈ AutA with ϕn = 1.

If A is a vector space over a field k of char. coprime to n, then, after extending the field with ω = n
√

1, that is,
replacing A with A⊗Z Z[ω] we have eigenspace decomposition (no Jordan blocks of size > 1 since characteristic
is coprime to n), that is, diagonalizable.



In another extreme case, in char. p and |ϕ| = pn, we saw that no need to extend the field, all eigenvalues 1 and
Jordan blocks of size 6 pn × pn.

But what happens “in general”?

Replace A with A⊗Z Z[ω], so ω = n
√

1 in the ground ring.

Define Ai = {a ∈ A | aϕ = ωia}, subgroups of A.

“Almost eigenspace decomposition”

Proposition. (a) nA ⊆ A0 +A1 + · · ·+An−1;
(b) If a0 + a1 + · · ·+ an−1 = 0 for ai ∈ Ai, then nai = 0 for all i.

(Of course, if nA = A, then the whole A; if nx = 0⇒ x = 0, then sum is direct.)

Proof: for a ∈ A, let ai =
∑n−1
k=0 ω

−kiaϕk, then ai ∈ Ai
and

∑
i

∑
k ω
−kiaϕk =

∑
k

(∑
i ω
−ki)aϕk = naϕ0 = na

since
∑
i ω
−ki = 0 unless ω−k = 1⇔ k ≡ 0 (modn).

Also, apply ϕk to a0 + a1 + · · ·+ an−1 = 0 for k = 0, . . . , n− 1,
then take sums with appr. coeff., get nai = 0 for all i for same reasons...

Automorphism and cyclic grading
Clearly, [Li, Lj ] 6 Li+j(modn):

[li, lj ]ϕ = [liϕ, ljϕ] = [ωili, ω
j lj ] = ωi+j [li, lj ]

When L = L0 ⊕ L1 ⊕ · · · ⊕ Ln−1 and [Li, Lj ] 6 Li+j(modn),
L is called a (Z/nZ)-graded Lie ring with components Li.

Theorem (Higman–Kreknin–Kostrikin). If a Lie ring L admits ϕ ∈ AutL of prime order p such that CL(ϕ) = 0,
then L is nilpotent of class 6 h(p).

Equivalent:

Theorem (Higman–Kreknin–Kostrikin). If L is a (Z/pZ)-graded Lie ring, where p is a prime, then γh(p)+1(L) 6
id〈L0〉.

It is in this way it is actually proved.
Moreover:

Theorem (Combinatorial H–K–K theorem). For any xi1 , . . . , xih(p)+1
in any Lie ring with formal indices, the

commutator [...[xi1 , xi2 ], . . . , xih(p)+1
] is equal to a linear combination of commutators in the same elements each

containing a subcommutator with zero mod p sum of indices (can be transformed by Jacobi identity and anticom-
mutativity to such a lin. combin.)

Example: p = 3 (indices indicate components):
[x1, y1, z2] = [x1, z2, y1] + [x1, [y1, z2]] = [[x1, z2]0, y1]− [[y1, z2]0, x1].
For automorphism? Extend ground ring with p

√
1; “eigenspaces”;

still L0 = CL(ϕ) = 0.

pL 6
∑p−1

1 Li and L0 = 0.

By combinatorial H–K–K theorem:
γh(p)+1(pL) 6 γh(p)+1(

∑p−1
1 Li) 6 id〈L0〉 = 0

Thus, ph(p)+1γh(p)+1(L) = 0.

So the additive group γh(p)+1(L) is a p-group. Hence = 0, as otherwise automorphism ϕ of order p would
have fixed points.

Kreknin’s theorem

Theorem (Kreknin). If a Lie ring L admits ϕ ∈ AutL of finite order n such that CL(ϕ) = 0, then L is soluble of
derived length 6 2k(n).

Theorem (Kreknin). If L is a (Z/nZ)-graded Lie ring, then L(k(n)) 6 id〈L0〉.

Moreover: combinatorial ......

Proof: double induction:
(a) L(2s−1) ∩ Ls 6 〈Ls+1, . . . , Ln−1〉 + id〈L0〉
(b) L(2s−1) 6 〈Ls+1, . . . , Ln−1〉 + id〈L0〉
(note: subring 〈Ls+1, . . . , Ln−1〉).
Using: for integers 1 6 a, b, c 6 n− 1, if a+ b ≡ c (modn), then either both a > c and b > c, or both a < c

and b < c.



For automorphism: similarly: extend ground ring with n
√

1;
“eigenspaces”; still L0 = CL(ϕ) = 0.

nL 6
∑n−1

1 Li and L0 = 0.
Then (nL)(k(n)) 6 id〈L0〉 = 0 by combinatorial Kreknin theorem.

So, n2k(n)

L(k(n)) = 0⇒ the additive group L(k(n)) is periodic =
⊕

q Sq Sylow subgroups, where each Sq is
even an ideal of L.

The q′-part of 〈ϕ〉 is fixed-point-free on Sq . For coprime action Sq =
⊕

(Sq ∩Li), so by Kreknin S(k(n))
q = 0

⇒
(
L(k(n))

)(k(n))
= 0, so L is soluble of derived length 2k(n).

(Z/nZ)-graded Lie ring L with few non-zero components

Shalev, Khukhro:
Suppose L = L0 ⊕ · · · ⊕ Ln−1 is a (Z/nZ)-graded Lie ring in which are only d nonzero components among
the Li. If L0 = 0, then L is soluble (for n prime, nilpotent) of d-bounded derived length (nilpotency class).

Proof by the same scheme as of Kreknin–Kostrikin, “skipping” steps due to non-existence components.

Finds applications to groups of bounded rank with almost fixed-point-free automorphisms, and to Frobenius
groups of automorphisms.

Lie ring methods for groups

hypothesis on a group hypothesis on a Lie ring

G L

G L

a Lie ring theorem

result on the group
recovered

result on the Lie ring

H�

�
H

@@��

1. A hypothesis on a group is translated into a hypothesis on a Lie ring constructed from the group in some
way.

2. Then a theorem on Lie rings is proved (or used).

3. Finally, a result about the group must be recovered from the Lie ring information obtained.

Various Lie ring methods:

1. For complex and real Lie groups: Baker–Campbell–Hausdorff formula, EXP and LOG functors

2. Mal’cev’s correspondence based on Baker–Campbell–Hausdorff formula for torsion-free (locally) nilpotent
groups

3. Lazard’s correspondence for p-groups of nilpotency class < p

4. Lie rings associated with uniformly powerful p-groups

5. Associated Lie ring based on lower central series

6. Lazard’s Lie algebra based on dimension subgroups (Zassenhaus filtration)

Associated Lie Ring
Lie ring method for arbitrary groups, including finite groups (where, e.g., Baker–Campbell–Hausdorff formula

cannot be applied):

Definition: associated Lie ring L(G)
For any group G: L(G) =

⊕
i

γi(G)/γi+1(G)

(lower central series γi(G) = [...[[G,G], G], . . . , G] (repeated i times))

Lie product for homogeneous elements: [a+ γi+1, b+ γj+1]Lie ring : = [a, b]group + γi+j+1

extended to the direct sum by linearity.

Pluses: Always exists. Nilpotency class of G = nilp. class of L(G)



Minuses: Only about G/
⋂
γi(G), so only for (residually) nilpotent groups.

Even for these, some information may be lost: e. g., derived length may become smaller.

Example. Because in L(G) we have γk/γk+1 = [G/γ2, . . . , G/γ2︸ ︷︷ ︸
k

] linear product:

If G is nilpotent of class c and exponent of G/γ2 is n, then the exponent of G divides nc, as each γk/γk+1 has
exponent dividing n:

n[a1, a2, . . . ] = [na1, a2, . . . ] = [0, a2, . . . ] = 0.

If in addition G is d-generated, then |G| is bounded in terms of n, c, d.

If an automorphism ϕ ∈ AutG acts trivially on G/γ2, then ϕ acts trivially on γi/γi+1 for all i.

Group-theoretic applications of Kreknin’s and Higman’s theorems
Immediate for connected simply connected Lie groups with fixed-point-free automorphism of finite order.

For any nilpotent groups:

Corollary (Higman 57)
If a (locally) nilpotent group G has an automorphism ϕ ∈ AutG of prime order p such that CG(ϕ) = 1, then G
is nilpotent of class 6 h(p).

Proof: consider L(G) with the induced automorphism:

CL(G)(ϕ) = 0 (for finite G, since must be a p′-group,
for infinite, modify L(G) =

⊕√
γi)

⇒ L(G) is nilpotent of class 6 h(p).

Hence so is G. (True for any finite G; nilpotent by Thompson 59.)

Recall:

Open problem
Does an analogue of Kreknin’s theorem hold for nilpotent groups with a fixed-point-free automorphism of arbitrary
finite order n? that is, is derived length 6 f(n)?

(Same question for arbitrary finite group, but everything is already reduced to nilpotent groups: soluble by
classification, and Fitting height bounded by Hall–Higman–type theorems.)

Here L(G) does not work as derived length is not preserved.

So far known only for n prime (Higman–Kreknin–Kostrikin), and n = 4 (Kovács, 61)
Nevertheless, Kreknin’s theorem was successfully applied to finite p-groups with an automorphism of order

pk and to pro-p-groups of given coclass in the papers of Alperin, Jaikin-Zapirain, Khukhro, Medvedev, Shalev,
Shalev–Zel’manov.

Lie rings with almost regular automorphism of finite order
Almost fixed-point-free⇒ almost soluble (or nilpotent), with bounds.

Theorem (Khukhro, 89, Makarenko–Khukhro, 04, Makarenko, 05)
If a Lie algebra (ring) L admits an automorphism ϕ of finite order n such that dimCL(ϕ) = r (or |CL(ϕ)| = r),
then L contains a solvable ideal of n-bounded derived length and of (n, r)-bounded codimension.

If in addition n is a prime, then L has even a nilpotent ideal of n-bounded class and of (n, r)-bounded codi-
mension.

Basically about (Z/nZ)-graded Lie ring L with dimL0 = r (or |L0| = r)

Non-trivial even for finite-dimensional, because of those bounds.

Method of graded centralizers

Example. Simplest case n = 2: let L = L0 ⊕ L1 be (Z/2Z)-graded
with dimL0 = m. Aim: nilp. ideal of class 2 of m-bounded codim.

We can assume L = 〈L1〉.
‘Freeze’ some expressions for a basis of L0, need m of them: [x1, x2], . . . , [x2m−1, x2m], where xi ∈ L1.

‘Graded centralizer’: C(xj) = {y ∈ L1 | [xj , y] = 0}
Each has codim 6 m in L1, as cosets correspond to distinct elements of L0. Then Z =

⋂m
i=1 C(xi) also has

bounded codim.



Subalgebra 〈Z〉 is nilpotent of class 2: for any zi ∈ Z, we have [[z1, z2], z3] = (since [z1, z2] is a linear
combination of those fixed [xj , xj+1]) = lin. comb. of [[xj , xj+1], z3] = 0 by the definition of Z (and by Jacobi
identity).

(Z is a subalgebra; further effort required to obtain an ideal.)

General case: dimL0 = m ⇒ almost soluble
Freeze boundedly many representatives [xi1(1), . . . , xik(1)] ∈ L0

with
∑
j ij = 0, of bounded weight.

Graded centralizers of level 1: Zj(1) = Ker of
yj → [yj , xj1(1), . . . , xjs(1)] where j +

∑
k jk = 0;

this is a homomorphism of abelian groups Lj → L0.

Hence codim. of Zj(1) in Lj is at most dimL0.

Consider L(1) = 〈Z1(1), . . . , Zn−1(1)〉 of bounded codim.

Repeat, freezing [xi1(2), . . . , xik(2)] for some xk(2) ∈ Zk(1),
where

∑
j ij = 0.

...And so on. Graded centralizers of level k:
Zj(k) = Ker of yj → [yj , xj1(l1), . . . , xjs(ls)]
where j +

∑
k jk = 0, with various lower levels (li).

After reaching certain bounded level N ,

the required bounded-soluble subalgebra of bounded codim. is
〈Z1(N), . . . , Zn−1(N)〉.
Clearly of bounded codim., as each Zi is in Li, and dimL0 = m.

Why bounded-soluble?

(H–K–) Kreknin’s theorem applied several times in a certain collecting process, obtain

a) multiple entries of (various) c0 ∈ L0 in [yj(N), c0, . . . , c0] and

b) augmented [...[ , ]0, ]0, . . . ]0.

Since all c0 expressed in highest level – also in lower levels.

Another collecting process aiming at

[yj(N), xj1(l1), . . . , xjs(ls)] = 0 because N > lk and j +
∑
jk = 0.

Group-theoretic corollaries for order of CG(ϕ)

Theorem (Khukhro, 89, Medvedev, 94)
If a nilpotent group G admits an automorphism of prime order p with exactly r fixed points, then G has a nilpotent
subgroup of p-bounded nilpotency class and of (p, r)-bounded index.

(Also true for any finite group G – reduction to nilpotent due to Fong, 79 (+CFSG) and Hartley–Meixner =
Pettet, 81.)

Proof is based on using the associated Lie rings and Lie ring theorem.
But notrivial recovery G←− L, as there is no good correspondence for subgroups↔subrings.

Recall that for non-prime |ϕ| even fixed-point-free case remains open for groups. (Except for |ϕ| = 4: fixed-
point-free Kovács, 61, and for |CG(ϕ)| = m EKh–Makarenko, 2006)

Group-theoretic corollaries for rank of CG(ϕ)

Theorem (EKh, 08)
If a nilpotent group G admits an automorphism of prime order p with CG(ϕ) of rank r, then G has a nilpotent
subgroup N of p-bounded nilpotency class with G/N of (p, r)-bounded rank.

Here even G→ L is unclear! Apart from Lie ring result, also group rings are used.

Recall: for any finite group G, +EKh+Mazurov+CFSG

G > N > R > 1 with G/N and R of (p, r)-bounded rank and N/R nilpotent — now also N/R nilpotent of
p-bounded nilpotency class.



“Modular situation”
“Modular” — if a finite p-group P admits an automorphism of order pn (which cannot be fixed-point-free).

Alperin 63 – Khukhro 85
If a finite p-group P admits an automorphism ϕ of prime order p with |CP (ϕ)| = pm, then P has a subgroup of
(p,m)-bounded index that is nilpotent of class 6 h(p) + 1 (even 6 h(p) as noted by Makarenko).

Proofs use associated Lie ring and Higman’s theorem.

Proof of Alperin–Khukhro theorem
H–K–K theorem is applied to L(P ) — even though ϕ not regular, and even |CL(P )(ϕ)| can be much greater

than |CP (ϕ)|, like times nilpotency class.

Recall elementary fact: always, |CG/N (ϕ)| 6 |CG(ϕ)|.
Rank of any ϕ-invariant abelian section M/N of P is at most pm: as |CM/N (ϕ)| 6 pm, plus recall corollary

of Jordan normal form for ϕ.

Consider ϕ ∈ AutL(P ). Since |Cγi(P )/γi+1(P )(ϕ)| 6 pm,
Lagrange: pmCL(P )(ϕ) = 0, whence pm id

〈
CL(P )(ϕ)

〉
= 0.

Fix h := h(p). By H–K–K theorem: γh+1(pL(P )) 6 id

〈
CL(P )(ϕ)

〉
.

On the left = ph+1γh+1(L(P )). Plus, pm id

〈
CL(P )(ϕ)

〉
= 0

Together: ph+1+mγh+1(L(P )) = 0.

In terms of P :
(γi(P )/γi+1(P ))p

h+m+1

= 1 for all i > h+ 1.

Plus, the rank of γi(P )/γi+1(P ) is at most pm.

Together: |γi(P )/γi+1(P )| 6 ppm(h+m+1) for all i > h+ 1.

Note that the same for any ϕ-invariant subgroup Q:
|γh+1(Q)/γh+2(Q)| 6 ppm(h+m+1).

P. Hall’s theorem: for H = γpm(h+m+1)+1(P ),
|γi(H)/γi+1(H)| > ppm(h+m+1)+1 unless γi+1(H) = 1.

But |γh+1(H)/γh+2(H)| 6 ppm(h+m+1) as we saw above.

Thus, to avoid a contradiction: γh+2(H) = 1.

Thus, γh+2(γpm(h+m+1)+1(P )) = 1, in particular a bound for the derived length.

|γh+1/γh+2| > ppm(h+m+1)+1 |γh+1/γh+2| 6 ppm(h+m+1)
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γh+2 = 1

Improve: the semidirect product P 〈ϕ〉 also admits ϕ as the inner automorphism with exactly pm+1 fixed points.

Just replace m by m+ 1 above and put H1 = γp(m+1)(h+m+2)+1(P 〈ϕ〉).

Then γh+2(H1) = 1.

Advantage: ϕ acts trivially on factors of lower central series of P 〈ϕ〉. Hence their orders 6 pm+1, as
|CP 〈ϕ〉(ϕ)| = pm+1.

Therefore, the index of H1 = γp(m+1)(h+m+2)+1(P 〈ϕ〉) in P is bounded!
and H1 is nilpotent of class 6 h(p) + 1.

(Makarenko even improved to nilpotency class 6 h(p).)

The main advantage of the “modular case”

where a p-automorphism ϕ acts on a p-group P ,

is the bound for the rank (dimension) in terms of |ϕ| and rank of CP (ϕ).

As we know, this gives a characteristic powerful subgroup of bounded index, so largely reduces to powerful
p-groups.



(More later).

Frobenius group of automorphisms with fixed-point-free kernel
Let G be a finite group admitting a Frobenius group of automorphisms FH 6 AutG with kernel F and

complement H such that CG(F ) = 1.

Recall:

New approach:
proving that properties (or parameters) of G are close to the corresponding properties (parameters) of CG(H)
(possibly also depending on H).

Fitting height (=nilpotent length)

Theorem
Frobenius group FH 6 AutG with kernel F such that CG(F ) = 1.

Then the Fitting height of G is equal to the Fitting height of CG(H).

Corollary
Frobenius group FH 6 AutG with kernel F such that CG(F ) = 1.

If CG(H) is nilpotent, then G is nilpotent.

Theorem largely reduces further study to the case of nilpotent groups.

Bounding nilpotency class

Theorem (EIKh–N. Yu. Makarenko–P. Shumyatsky)
Frobenius group FH 6 AutG with cyclic kernel F such that CG(F ) = 1. If CG(H) is nilpotent of class c, then
G is nilpotent of (c, |H|)-bounded class.

Question: does it really depend on |H|?
So far there are only examples with class of G greater than that of CG(H).

Based on analogous theorem on Lie rings

Theorem (EIKh–N. Yu. Makarenko–P. Shumyatsky)
Let L be a Lie ring satisfying certain conditions.

Frobenius group FH 6 AutL with cyclic kernel F such that CL(F ) = 0. If CL(H) is nilpotent of class c,
then L is nilpotent of (c, |H|)-bounded class.

For groups easily follows: the associated Lie ring L(G) =
⊕

i γi/γi+1, where γi are terms of the lower central
series of G,

has exactly the same nilpotency class as G.

CL(G)(H) is also nilpotent of class c, and CL(G)(F ) = 0. By Lie ring theorem, L(G) is nilpotent of (c, |H|)-
bounded class, and therefore so is G.

Metacyclicity of FH is essential: simple Lie algebra

Example. The simple 3-dimensional Lie algebra L of characteristic 6= 2 with basis e1, e2, e3 and structure
constants [e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2

admits the Frobenius group of automorphisms FH with non-cyclic F of order 4 and H of order 3:

F = {1, f1, f2, f3}, where fi(ei) = ei, fi(ej) = −ej for i 6= j, and H = 〈h〉 with h(ei) = ei+1 (mod 3).

Then CL(F ) = 0, while CL(H) is one-dimensional (hence abelian).

Metacyclicity of FH is essential: nilpotent Lie rings L of unbounded derived length.

Example. Let the additive group of L be the direct sum of three copies of Z/pmZ for a prime p 6= 2 with
generators e1, e2, e3; let the structure constants be [e1, e2] = pe3, [e2, e3] = pe1, [e3, e1] = pe2.

“The same” non-metacyclic Frobenius group of automorphisms FH:

F = {1, f1, f2, f3}, where fi(ei) = ei and fi(ej) = −ej for i 6= j, and H = 〈h〉 with h(ei) = ei+1 (mod 3).

Then CL(F ) = 0 and CL(H) = 〈e1 + e2 + e3〉.
It is easy to see that L is nilpotent of class m, and its derived length is ≈ logm.



Metacyclicity of FH is essential: nilpotent groups

Example. That nilpotent Lie ring can be turned into a nilpotent group:

If in the preceding example p > m, then the Lazard correspondence can be applied based on the “truncated”
Baker–Campbell–Hausdorff formula. Then L becomes a finite p-group P of the same derived length admitting the
same group of automorphisms FH with CP (F ) = 1 and with cyclic CP (H).

About the proof for Lie rings

Theorem (EIKh–N. Yu. Makarenko–P. Shumyatsky)
Frobenius group FH 6 AutL with cyclic kernel F such that CL(F ) = 0. If CL(H) is nilpotent of class c, then
the Lie ring L is nilpotent of (c, |H|)-bounded class.

Let |F | = n. Extend the ground ring by a primitive nth root of unity ω.

Define the eigenspaces for F = 〈ϕ〉:
Li = {x ∈ L | xϕ = ωix}. Roughly speaking,

L = L1 ⊕ · · · ⊕ Ln−1 and [Li, Lj ] ⊆ Li+j (mod n),

which is a (Z/nZ)-grading. Plus we have the condition L0 = CL(F ) = 0.

Kreknin’s theorem: then L is soluble of n-bounded derived length. But we need nilpotency, and of class
bounded in terms of CL(H) and |H|.

The simplest case of abelian CL(H)
L = L1 ⊕ · · · ⊕ Ln−1; [Li, Lj ] ⊆ Li+j (mod n); L0 = 0.

H = 〈h〉 permutes the components Li “freely”:
Li
h = Lri, where r is determined from ϕh

−1

= ϕr.

For uk ∈ Lk, denote uh
i

k = urik ∈ Lrik.

The sum over an H-orbit belongs to CL(H), which is abelian. Therefore

[xk + xrk + · · ·+ xr|H|−1k, xl + xrl + · · ·+ xr|H|−1l] = 0.

Expand brackets. If [xk, xl] 6= 0, there must be other terms in the same component Lk+l for cancellation to
happen.

Therefore, k + l = kri + lrj , so that l = − r
i − 1

rj − 1
k.

Hence, for a given k there are at most |H|2 values of l such that [Lk, Ll] 6= 0.

“Selective nilpotency” conditions

Theorem
Let L =

⊕n−1
i=0 Li be a (Z/nZ)-graded Lie ring such that L0 = 0

and for some m every grading component Lk
may not commute with at most m components:

|{i | [Lk, Li] 6= 0}| 6 m.

(a) Then L is soluble of m-bounded derived length.

(b) If in addition n is a prime, then L is nilpotent of m-bounded class.

This works for the case of abelian CL(H).

The proof uses the “skipping” versions of Kreknin’s theorem (due to Shalev and EIKh), when there are only
few non-zero grading components, as mentioned above.

In the general case, whenCL(H) is non-abelian but nilpotent of class c, a more complicated technical “selective
nilpotency” condition arises, from which the required result is derived by rather difficult arguments.

Bounding the exponent

Theorem (EIKh–N. Yu. Makarenko–P. Shumyatsky)
Frobenius group FH 6 AutG with cyclic kernel F such that CG(F ) = 1. Then the exponent of G is bounded in
terms of |FH| and the exponent of CG(H).

Question: is the hypothesis “F is cyclic” essential?

Question: does the exponent of G really depend on |F |?



Question: ... at least for F cyclic?

Question: ... at least for GFH being 2-Frobenius?
(This is Mazurov’s question 17.72(b) in Kourovka Notebook.)

Question: does the exponent of G really depend on |H|?
(So far there are only a couple of examples where exponent of G is greater than that of CG(H).)

Using Lazard’s Lie algebra
Recall:

Theorem (EIKh–N. Yu. Makarenko–P. Shumyatsky)
Frobenius group FH 6 AutG with cyclic kernel F such that CG(F ) = 1. Then the exponent of G is bounded in
terms of |H| and the exponent of CG(H).

Proof is easily reduced to the case where G is a finite p-group.

Another Lie algebra:

Jennings–Zassenhaus filtration: Di = Di(G) =
∏

jpk>i
γj(G)p

k

.

Lie algebra DL(G) =
⊕
Di/Di+1.

Subalgebra Lp(G) = 〈D1/D2〉 generated by D1/D2.

Connection with powerful p-groups
Recall: powerful p-groups: Gp > [G,G] for p 6= 2 (or G4 > [G,G] for p = 2).

Lazard +... :
If X is a d-generator finite p-group such that the Lie algebra Lp(X) is nilpotent of class c, then X contains a
powerful characteristic subgroup of (p, c, d)-bounded index.

Lazard:
If x ∈ G is of order pt, then its image x̄ in the appropriate factor as an element of DL(G) is ad-nilpotent of index
pt.

Scheme of proof of exponent theorem
Lp(G) is soluble by Kreknin;

+ all factors are generated by ad-nilpotent elements, since G = 〈CG(H)F 〉 by “freedom Lemma”;

together imply the nilpotency of Lp(G).

Therefore G can be assumed to be powerful, which are easy to handle: if a powerful p-group is generated by
elements of given order e, then the group is of exponent e.

Use again G = 〈CG(H)F 〉.

Some further results. First step for exponent with non-metacyclic FH:

P. Shumyatsky
Frobenius group FH 6 AutG of order |FH| = 12 with kernel F such that CG(F ) = 1. Then the exponent of G
is bounded in terms of the exponent of CG(H) (and “12”).

Combination of exponent and nilpotency:

P. Shumyatsky
Frobenius group FH 6 AutG with cyclic kernel F such that CG(F ) = 1. If CG(H) satisfies a positive law of
degree k, then G satisfies a positive law of degree bounded in terms of k and |FH|.

Positive law: v = w, where group words v, w involve only positive powers of variables.

A positive law of degree k for a finite group implies that it is an extension of a nilpotent group of k-bounded
class by a group of k-bounded exponent. Conversely, every such an extension satisfies a positive law of bounded
degree.

4. Baker–Campbell–Hausdorff formula



Baker–Campbell–Hausdorff formula
1 +A free associative (noncommutative) algebra over Q
with “outer” 1 (can always be adjoined)
completed with formal infinite power series (or nilpotent).

formal exponential ea = 1 + a+ a2/2 + a3/3! + · · ·
and logarithm log(1 + a) = a− a2/2 + a3/3± · · · .
A(−) Lie algebra w.r.t. [a, b] = ab− ba.

Theorem. Then ex · ey = eH(x,y), where H(x, y) belongs to the Lie subalgebra generated in A(−) by x, y.

H(x, y) = log(ex · ey) = x+ y + 1
2 [x, y] + 1

12 [x, y, y]− 1
12 [x, y, x]− 1

24 [x, y, x, y] + · · ·
B–C–H formula is used in theory of Lie groups and algebras, where EXP and LOG maps help to pass from Lie

groups to Lie algebras — most important in classification of simple Lie groups.

Mal’cev correspondence

Theorem. If L is a locally nilpotent Lie algebra over Q, then the same set L becomes a divisible (radicable)
locally nilpotent torsion-free group G with respect to the operation a · b = H(a, b).

Every divisible locally nilpotent torsion-free group can be obtained in this way. The Lie operations in L
are recovered by inversions of the B–C–H formulae: a+ b = H1(a, b) and [a, b]L = H2(a, b), where H1, H2 are
products of group commutators in a, b (with exponents in Q).

This is a category isomorphism: everything in the language of locally nilpotent Lie Q-algebras is translated
into the language of divisible locally nilpotent torsion-free groups, and vice versa.

Many properties correspond: exactly the same nilpotency class, derived length, etc.

Ideals = normal divisible subgroups,
sections are abelian (central) in L⇔ in G, etc., etc.

Automorphisms are exactly the same.

Note:

x+ y ≡ xy (mod γ2(〈x, y〉));

kx = xk;

[x, y] ≡ [x, y] (mod γ3(〈x, y〉)).

Lie ring method preserving derived length

Theorem (Folklore). If a locally nilpotent torsion-free group G has an automorphism ϕ ∈ AutG of finite order
n such that CG(ϕ) = 1, then G is soluble of derived length 6 k(n).

Proof: Embed G into its Mal’cev completion Ĝ by adjoining all roots of nontrivial elements;

then ϕ extends to Ĝ with CĜ(ϕ) = 1.

Let L be the Lie algebra over Q in the Mal’cev correspondence with Ĝ given by Baker–Campbell–Hausdorff
formula.

Then ϕ can be regarded as an automorphism of L with CL(ϕ) = 0.

By Kreknin, L is soluble of derived length 6 k(n);

hence so is Ĝ, and so is G.

Endimioni 2010
If a polycyclic group G has an automorphism ϕ ∈ AutG of prime order p with finite fixed-point subgroup,
|CG(ϕ)| <∞, then G has a subgroup of finite index that is nilpotent of class 6 h(p).

Remarks:

no function to bound the index of a nilpotent subgroup,

G may not be nilpotent even if CG(ϕ) = 1.

Proof: by reduction to finite q-groups with fixed-point-free automorphism ϕ, to which Higman’s theorem is
applied.



Remark, EKh 2010
If a polycyclic group G has an automorphism ϕ ∈ AutG of finite order n with finite fixed-point subgroup,
|CG(ϕ)| <∞, then G has a subgroup of finite index that is soluble of derived length 6 k(n) + 1.

Proof: by Mal’cev’s theorem, G has a characteristic subgroup H of finite index with torsion-free nilpotent
derived subgroup [H,H].

Now Folklore’s theorem above can be applied to [H,H], so H is soluble of derived length 6 k(n) + 1.

Lazard correspondence for p-groups of nilpotency class < p
It is known that for a given prime p, denominators in H(x, y) at commutators of weight 6 p − 1 are not

divisible by p. The same for the inverse formuale H1, H2.

In a p-group p′-roots exist and are unique, so n
√
g for p - n is well-defined (= some power of g). For abelian

additive p-group, 1
ng.

Theorem. If L is Lie ring with additive p-group, and L is nilpotent of class 6 p− 1, then L becomes a nilpotent
p-group G with respect to the operation a · b = H(a, b).

Every nilpotent p-group of class 6 p−1 can be obtained in this way. The Lie operations in L are recovered
by inverse B–C–H formulae: a + b = H1(a, b) and [a, b]L = H2(a, b), where H1, H2 are products of group
commutators in a, b (with exponents m

n for p - n).

For example, p-group of nilpotency class class 2 for p > 2:

a+ b = ab[a, b]−1/2 commutative operation.

Again, a category isomorphism: the language of class 6 p − 1 nilpotent Lie rings with additive p-group
translated into the language of class 6 p− 1 nilpotent p-groups, and vice versa, same automorphisms...

Hypotheses too strong?
But applications of the Baker–Hausdorff Formula in the theory of finite groups are rare. As G. Higman re-

marked in his address at the International Congress of Mathematicians in Edinburgh [1958], the restrictive precon-
ditions of such applications are

“...too severe to be used..., ...the sort of thing one wants in the conclusion of one’s theorem, rather than in the
hypothesis".

This makes it even more interesting that there are some examples of applications of the Baker–Hausdorff
Formula to finite groups.

In particular, used by Alperin and Glauberman in papers of 1997–....

Let us see some other examples.

Example. Let p > 2. If in a finite p-group P there are only p elements of order 6 p, then P is cyclic.

Proof: By induction, every maximal subgroup is cyclic. If there is only one maximal subgroup, then Frattini
has index p, so P/Φ(P ) is cyclic. so P is cyclic.

So assume there are at least two maximal subgroups; then their intersection is in the centre, since both are
abelian.

So quotient by centre is of order 6 p2, so abelian, so P is of class 2.

Since p > 2, we can apply Lazard correspondence – actually need only additive group of the resulting Lie ring
L. Element orders in P and in (L,+) are the same. So (L,+) is cyclic, hence P is cyclic.

Example. Suppose that a finite p-group P of nilpotency class < p admits a p-group of automophisms A such that
P/Φ(P ) is a free FpA-module. Then CP/Φ(P )(A) = CP (A)Φ(P )/Φ(P ).

Apply Lazard correspondence: P ↔ L.

In the free FpA-module fixed points are “diagonal elements”, say, c̄ =
∏
a∈A ḡ

a, where ḡ ∈ P/Φ(P ).

Just take z =
∑
a∈A g

a in L. Clearly, z ∈ CL(A) = CP (A).

And z̄ = c̄, since x+ y ≡ xy(mod [P, P ]).

Earlier Thompson, 64, for class 2, used for a signalizer theorem (proof was based on a lemma of N. Blackburn
on p-groups of maximal class). Then Bender extended that signalizer result using Baer’s class 2 special case of
Lazard’s correspondence.



p-groups of maximal class
... are |P | = pn and of nilpotency class n− 1.

Alperin: derived length p-bounded. Moreover,
Sheherd and Leedham-Green–McKay: P has class 2 nilpotent subgroup of p-bounded index.

Leedham-Green–McKay asked if the derived length can even be uniformly bounded (for various primes).

Example. Lie algebraL over Fp with basis e1, . . . , ep and structure constants [ei, ej ] = (i−j)ei+j when i+j < p,
and = 0 otherwise. |L| = pp.

Clearly, γk(L) = +〈ek+1, ek+2, . . . 〉, so that L is nilpotent of class p− 1.

Also can be seen that derived length of L is about log2 p.

Just apply Lazard’s correspondence

Shepherd–Leedham-Green–McKay for rank?
Suppose P is a 2-generator finite p-group whose lower central quotients γi(P )/γi+1(P ) are cyclic for all i > 2.

Is it true that P contains a normal subgroup N of nilpotency class 6 2 such that the rank of P/N is bounded in
terms of p only?

Example (EKh, 2012). L = 〈e1, . . . , en | [ei, ej ] = (i − j)ei+j if i + j 6 n; [ei, ej ] = 0 if i + j > n〉. Let G
be the group in Mal’cev correspondence with L.

Let H be the (abstract) subgroup of G generated by e1 and eM2 .
For sufficiently large M > M(n), all factors of the lower central series of H starting from the second one are

infinite cyclic.

Being 2-generator torsion-free nilpotent, H is residually finite p-group.

The p-groups that are quotients of H (for various n) are counterexamples: there are no functions d(p) and r(p)
such that a group P as above would necessarily have a normal subgroup of derived length 6 d(p) with quotient
of rank 6 r(p).

Generalization

EKh–Jaikin-Zapirain
There is a function f(c) such that for any nilpotent group of class c the subgroup Gf(c) can be endowed with the
structure of a Lie ring, with many of the properties preserved, like derived length, etc. (although not as good as
category isomorphism). The same also works for any GN for N divisible by f(c).

Just enough powers to make sure those denominators can be executed...

B–C–H formula also palys an impportant role in pro-p-groups.

B–C–H formula in “modular situation”

Shalev 93 – Khukhro 93
If a finite p-group P admits an automorphism ϕ of order pn with |CP (ϕ)| = pm, then P has a subgroup of
(p,m, n)-bounded index that is soluble of pn-bounded derived length.

Proofs use Kreknin’s theorem.

Shalev’s paper (with “weak” (p,m, n)-bound for the derived length) used a Lie ring constructed from a uni-
formly powerful p-group. Powerful p-groups arise naturally, as rank is (p,m, n)-bounded (for abelian, at most
mpn).

In EKh 93, first powerful p-groups, associated Lie ring and Kreknin’s theorem: weak (p,m, n)-bound for the
nilpotency class c = c(p,m, n) of the k(pn)th derived subgroup T = S(k(pn)) (of certain sections S).

Then Mal’cev correspondence applied to free nilpotent group with an automorphism, again Kreknin’s theorem,
interpreted for the p-group in question.

Applying powerful p-groups and associated Lie ring

Definition: G a finite p-group, N is powerfully embedded if Np > [N,G] (N4 > [N,G] for p = 2).

Taking pth powers and commutator subgroups produces powerfully embedded subgroups from powerfully
embedded subgroups:

if N is powerfully embedded, then so are Np, [N,G], etc.

Shalev’s Interchanging Property:
If M,N are powerfully embedded, then [Mp, N ] = [M,N ]p.

In a powerful p-group P p
i

= {xpi | x ∈ P} form central series,
with non-increasing orders of factors.



Definition: uniformly powerful: |P pi/P pi+1 | = const.

Cancellation property:
If P is uniformly powerful, then

xp
i ∈ P pk ⇒ x ∈ P pk−i if i 6 k and P p

k 6= 1.

Uniformly powerful, weak bound

Proposition 1
Suppose that a uniformly powerful p-group P admits an automorphism ϕ of order pn with exactly pm fixed points.
Then the k(pn)th derived subgroup P (k(pn)) is nilpotent of (p,m, n)-bounded class.

Fix for brevity k = k(pn) Kreknin’s function.
Fixing some s ∈ N (to be chosen later),
consider P p

s

– also uniformly powerful.
Consider ϕ as automorphism of the associated Lie ring L = L(P p

s

).

By Kreknin in combinatorial form, (pnL)(k) ⊆ id〈CL(ϕ)〉.
(Recall: |CG/N (ϕ)| 6 |CG(ϕ)| always.)

By Lagrange, pmCL(ϕ) = 0, so pm id〈CL(ϕ)〉 = 0.

Hence, pm+n2kL(k) = 0.

In group terms:
(
(P p

s

)(k)
)pm+n2k

6 γ2k+1(P p
s

).

Interchanging: (P (k))p
s2k+m+n2k

6 γ2k+1(P )p
s2k+s

6 P p
s2k+s

. (∗)
Idea: use the extra summand + s in the exponent on the right.

Let pe be the exponent of P , we shall choose s so that the ratio e/s is (p,m, n)-bounded.

By Cancellation Property: “cancel" the summand s2k in the exponents: then P (k) will be “almost” contained
in P p

s

. Then by Interchanging Property γe/s(P p
s

) = γe/s(P )p
(e/s)s

6 P p
e

= 1; so the result will follow since
e/s is (p,m, n)-bounded: extra +m+ n2k is small, easily “killed off” by small increase of class.

Clearly, the larger s the better (smaller) bound for the class of P (k). But: Cancellation Property works only if
r.h.s. 6= 1.

So we choose s = [e/(2k + 1)], that is, s is the maximal integer satisfying s2k + s 6 e. ....Omit technical
details...

Collecting uniformly powerful pieces

Proposition 2
If P is a powerful p-group admitting an automorphism of order pn with pm fixed points, then P (k(pn)) is nilpotent
of (p,m, n)-bounded class.

By properties of powerful:
|P/P p| > . . . > |P pi/P pi+1 | > |P pi+1

/P p
i+2 | > . . .

P p
i

/P p
i+1

are elementary abelian, and the ranks are (p,m, n)-bounded
⇒ there are only (p,m, n)-bounded number of strict inequalities.

A segment with equalities corresponds to a uniformly powerful section.
So a series of (p,m, n)-bounded length with uniformly powerful factors:
P > P p

i1
> P p

i2
> . . . > P p

il−1
> 1.



. . .

. . .

-� rank 6 mpn

P p
is
/P p

is+1

uniformly
powerful

P
P p

P p
2

...

P p
is

P p
is+1

Series of (p,m, n)-bounded length with uniformly powerful factors:
P > P p

i1
> P p

i2
> . . . > P p

il−1
> 1. Induction on the length l of this series. Basis when P is uniformly

powerful is Proposition 1 above.

..... Repeated application of Interchanging property and Proposition 1...

Application of Mal’cev corrspondence
Since rank is bounded, P has a powerful characteristic subgroup of bounded index; so we may assume P to be

powerful.

By Proposition 2, P (k) is nilpotent of bounded class c = c(p,m, n).

Free c-nilpotent 〈ϕ〉-operator group F → P (k)

Mal’cev completion F̂ ↔ L Lie algebra L over Q
Kreknin’s theorem: L(k(pn)) ⊆ id〈CL(ϕ)〉

translated into the group language as F̂ (k(pn)) ⊆ 〈CF̂ (ϕ)F̂ 〉

By bounded nilpotency class, (F g(p,m,n))(k(pn)) ⊆ 〈CF (ϕ)F 〉, where a certain power F g(p,m,n) replaces F̂

⇒ same for P (k):

((P (k))g(p,m,n))(k(pn)) ⊆ 〈CP (k)(ϕ)P
(k)〉

Completion of the proof
Recall:

(
(P (k))p

w)(k)
6
〈
CP (k)(ϕ)P

(k)
〉

for some (p,m, n)-bounded number pw.

On the right,
〈
CP (k)(ϕ)P

(k)
〉

is generated by conjugates of elements in CP (k)(ϕ), which have order at most
pm (recall |CG/N (ϕ)| 6 |CG(ϕ)|),

+ bounded class c = c(p,m, n)⇒
〈
CP (k)(ϕ)P

(k)
〉

has bounded exponent dividing pmc.

So
((

(P (k))p
w)(k)

)pmc
= 1.

Interchanging: (P p
z

)(2k) 6
((

(P (k))p
w)(k)

)pmc
= 1,

for some (p,m, n)-bounded number z.

Rank and exponent of P/P p
z

are (p,m, n)-bounded⇒ P p
z

is required subgroup of (p,m, n)-bounded index
of derived length 6 2k(pn).

5. Elimination of operators by nilpotency

Finite p-groups with a partition
Henceforth, P is a finite p-group.

Equivalent definitions:



(a) P =
⋃
Pi for some Pi < P such that Pi ∩ Pj = 1;

(b) P 6= Hp(P ) := 〈g ∈ P | gp 6= 1〉 (proper Hughes subgroup);

(c) P = P1 o 〈ϕ〉, where ϕp = 1 and xxϕxϕ
2 · · ·xϕp−1

= 1 for all x ∈ P1 (splitting automorphism of P1).

Such groups generalize (are close to) groups of exponent p:

outside a proper subgroup all elements are of order p,

and ϕ = 1⇒ exponent p.

(But there is no bound for the exponent of a p-group with a partition.)

Splitting automorphism approach

Splitting automorphism approach of condition (c) turned out to be most efficient. Recall:

(c) P = P1 o 〈ϕ〉, where

ϕp = 1 and xxϕxϕ
2 · · ·xϕp−1

= 1 for all x ∈ P1 (∗)
(ϕ is a splitting automorphism of P1).

(Note that we do not exclude the case where ϕ acts trivially on P1, when, of course, P1 must have exponent p.)

All groups with a splitting automorphism of order p form a variety of groups with operators defined by the
laws (∗).

Analogues of theorems on group of exponent p
Analogues of theorems on group of exponent p
are natural for finite p-groups with a partition
(equivalently, for p-groups with a splitting automorphism of order p).

Recall: (c) P = P1 o 〈ϕ〉, where ϕp = 1 and xxϕxϕ
2 · · ·xϕp−1

= 1 for all x ∈ P .

EKh-1981
If P1 in condition (c) has derived length d, then P1 is nilpotent of (p, d)-bounded class.

Based on Kostrikin’s theorem for groups of prime exponent,

EKh-1986
Analogue of the affirmative solution of the Restricted Burnside Problem: the nilpotency class of P1 is bounded in
terms of p and the number of generators.

As a corollary, a positive solution for the Hughes problem
was obtained for “almost all” finite p-groups.

Nilpotency class depending on automorphisms
EKh–Shumyatsky, 1995: if a finite group G of exponent p admits a soluble group of automorphisms A of

coprime order such that the fixed-point subgroup CG(A) is soluble of derived length d, then G is nilpotent of
(p, d, |A|)-bounded class.

Theorem 1
Suppose that a finite p-group P with a partition admits a soluble group of automorphisms A of coprime order such
that CP (A) has derived length d. Then any maximal subgroup of P containing Hp(P ) is nilpotent of (p, d, |A|)-
bounded class.

Note: the nilpotency class of the whole group P cannot be bounded.

The bound for the nilpotency class of that maximal subgroup can be chosen the same as in EKh–Shumyatsky-
95 for groups of exponent p.

Exponent
Theorem 2
If a finite p-group P with a partition admits a group of automorphisms A that acts faithfully on P/Hp(P ), then
the exponent of P is bounded in terms of the exponent of CP (A).

Frobenius groups of automorphisms
Corollary
Suppose that a finite group G admits a Frobenius group of automorphisms FH with cyclic kernel F = 〈ϕ〉 of
prime order p such that ϕ is a splitting automorphism, that is, xxϕxϕ

2 · · ·xϕp−1

= 1 for all x ∈ G.

(a) If CG(H) is soluble of derived length d, then G is nilpotent of (p, d)-bounded class.

(b) The exponent of G is bounded in terms of p and the exponent of CG(H).



Proof of Corollary

The group G is nilpotent by Kegel–Thompson–Hughes.
ϕ is fixed-point-free on Gp′ : for any g ∈ CG(ϕ) we have 1 = ggϕgϕ

2 · · · gϕp−1

= gp.
Hence Gp′ is nilpotent of p-bounded class by Higman–Kreknin–Kostrikin.
For (a) it now remains to consider the Sylow p-subgroup Gp of G. The result follows from Theorem 1 applied

to P = Gp〈ϕ〉 and A = H .

By a lemma in EKh–Makarenko–Shumyatsky-2010 Gp′ = 〈CGp′ (H)f | f ∈ F 〉.
So Gp′ is generated by elements of orders dividing the exponent of CG(H).
Plus p-bounded nilpotency class of Gp′ ⇒ exponent of Gp′ is bounded in terms of p and exponent of CG(H).
So in (b) it remains to consider Gp. The result follows from Theorem 2 applied to P = Gp〈ϕ〉 and A = H .

Comments on Frobenius groups of automorphisms
Examples show that dependence of the nilpotency class on p is essential in part (a) of Corollary (obviously also

true for exponent in part (b)).

Recent papers of EKh, Makarenko, Shumyatsky on finite groups G with a Frobenius group of automorphisms
FH with fixed-point-free kernel F :

Mazurov’s problem 17.72(a) from Kourovka Notebook was solved in the affirmative, and moreover, for any
metacyclic Frobenius group of automorphisms FH and nilpotent G, a bound for the nilpotency class of G was
obtained in terms of |H| and the nilpotency class of CG(H), as well as a bound for the exponent of G in terms of
|FH| and the exponent of CG(H).

Question
Question: can results like Corollary be obtained for Frobenius groups of automorphisms with kernel generated

by a splitting automorphism of composite order?

Examples show that nilpotency class cannot be bounded (even for cyclic kernel of order p2 generated by a
splitting automorphism and complement of order 2 with abelian fixed points).

Question remains open for the exponent, as well as for the derived length.

Proof of Theorem 1: elimination of automorphisms by nilpotency
Proof of Theorem 1 uses a modification of the method of elimination of automorphisms by nilpotency, which

was used in EKh-1991 earlier in the study of splitting automorphisms of prime order.

Reduction by known results to the main case:

Theorem 1′
Suppose that a soluble group FA with normal Sylow p-subgroup F = 〈ϕ〉 of order p and Hall p′-subgroup
A acts by automorphisms on a finite p-group G in such a manner that ϕ is a splitting automorphism, that is,
xxϕxϕ

2 · · ·xϕp−1

= 1 for all x ∈ G. If CG(A) is soluble of derived length d, then G is nilpotent of (p, d, |A|)-
bounded class. Furthermore, the bound for the nilpotency class can be chosen to be the same as in the case ϕ = 1
(given by EKh-Shumyatsky-95).

Free FA-group
The trick of elimination of automorphisms requires passing to a free FA-group X = 〈x1, x2, . . . 〉 of some

exponent pM and some nilpotency class N . (Of course, the bounds to be obtained must be independent of M and
N .)

As an abstract group, X is relatively free of exponent pM and nilpotent of class N , on the free generators xαi ,
where α ∈ FA, and FA permutes them regularly: (xαi )β = xαβi .

There is an FA-homomorphism ξ : X → G given by xi → gi for any gi ∈ G (provided M , N are a large
enough.)

Let C be the FA-invariant normal closure of (CX(A))(d).

Let S be the FA-invariant normal closure of all xxϕxϕ
2 · · ·xϕp−1

.

Clearly, C, S 6 Ker ξ by hypothesis.

Lemma
The subgroups C and S are invariant under any FA-endomorphism ϑ of X .

Trivialization of F
Since there is an FA-homomorphism ξ : X → G with C, S 6 Ker ξ, it is sufficient (and even necessary) to

prove that

[x1, . . . , xc+1] ∈ CS, where c is the nilpotency class given by EKh-Shumyatsky theorem when ϕ = 1.

Let T = [X,F ]F (“trivialization of F ”)



By EKh-Shumyatsky theorem, [x1, . . . , xc+1] ∈ CST ,

that is, we need to eliminate T .

Higman’s lemma
We have
[x1, . . . , xc+1] ≡ ck11 · · · ckmm (modCS), where ci ∈ T .

An analogue of Higman’s lemma gives that we can assume that
each ci depends on all x1, . . . , xc+1, and on ϕ.

One can show that we can furthermore assume that each ci has the form

[[xa∗i1 , . . .], [xa∗i2 , . . .], . . . , [x
a∗
ic+1

, . . .]] (a∗ ∈ A),

where {i1, i2, . . . , ic+1} = {1, 2, . . . , c+ 1} and there is at least one ϕ among “dots” in at least one of the sub-
commutators [xa∗ik , . . .] .

Self-amplification process
[x1, . . . , xc+1] ≡ ck11 · · · ckmm (modCS) (∗)
We “iterate”, “self-amplify”: by homomorphisms of the type

xk → [xa∗ik , . . .], k = 1, . . . , c+ 1

we express each ci = [[xa∗i1 , . . .], . . . , [x
a∗
ic+1

, . . .]] as the image of the left-hand-side,

then substitute the result into right-hand side of the original (∗).

As a result, the new (∗) has the same form but now each new ci has at least two occurrences of ϕ.

And so on, at each step we double the number of occurrences of ϕ in the new ci.

Since X〈ϕ〉 is nilpotent (being a finite p-group!), in the end we get ≡ 1, as required.

Proof of exponent theorem.
By known results, proof of Theorem 2 reduces to the following result.

Theorem 2′
If a finite p-group G admits a Frobenius group of automorphisms FA with kernel F = 〈ϕ〉 of order p and
complement A such that ϕ is a splitting automorphism, that is, xxϕxϕ

2 · · ·xϕp−1

= 1 for all x ∈ G, then the
exponent of G is bounded in terms of the exponent of CG(A).

Since any g ∈ G belongs to 〈gFA〉, we can assume that G is generated by |FA| elements.

By EKh-86 affirmative solution to an analogue of the Restricted Burnside Problem for groups with a splitting
automorphism of prime order p, the nilpotency class of G is bounded in terms of p and the number of generators,
which is at most p(p− 1).

It remains to obtain a bound for the exponent of V = G/[G,G].

Abelian case: eigenspaces.
Consider V = G/[G,G] as a ZFA-module, with additive notation. In particular, v+vϕ+vϕ2+· · ·+vϕp−1 =

0 for all v ∈ V by hypothesis.

Extend the ground ring by a primitive pth root of unity ω, forming W = V ⊗Z Z[ω]. Still have w + wϕ +
wϕ2 + · · ·+ wϕp−1 = 0 for all w ∈W .

Define analogues of eigenspaces for the “linear transformation” ϕ:

Wi = {w ∈W | wϕ = ωiw}.

Then W is an “almost direct sum” of the Wi:

pW ⊆W0 +W1 + · · ·+Wp−1

and
if w0 + w1 + · · ·+ wp−1 = 0 for wi ∈Wi, then pwi = 0 for all i.



A-orbits.
First: since ϕ = 1 on W0, for x ∈W0 we have px = x+ xϕ+ · · ·+ xϕp−1 = 0, so that pW0 = 0.

Action of A: permutes the Wi in the same way as it acts on 〈ϕ〉.
Let A = 〈α〉 and let ϕα

−1

= ϕr for some 1 6 r 6 p − 1. Let |α| = n; then r is a primitive nth root of 1 in
Z/pZ.

A “almost permutes” the Wi:
Wiα ⊆Wri for all i ∈ Z/pZ. Indeed, if xi ∈Wi, then (xiα)ϕ = xi(αϕα

−1α) = (xiϕ
r)α = ωirxiα.

Given uk ∈Wk for k 6= 0, to lighten the notation we denote ukαi by urik; note that urik ∈Wrik.
Let pe be the exponent of CG(A). Claim: Wi are annihilated by p1+e.

For any k 6= 0 and for any uk ∈Wk we have

uk + ukα+ · · ·+ ukα
n−1 = uk + urk + · · ·+ urn−1k ∈ CW (A)

(the sum over an A-orbit). Since peCV (A) = 0 (as CV (A) is the image of CG(A) by coprimeness of the action),
also peCW (A) = 0. Thus,

peuk + peurk + · · ·+ peurn−1k = 0.

By “almost direct sum”, in particular, ppeuk = 0.

Recall that pW0 = 0. As a result,

p2+eW ⊆ p1+e(W0 +W1 + · · ·+Wp−1) = 0,

so also p2+eV = 0.

In multiplicative notation, the exponent ofG/[G,G] divides p2+e, so the exponent ofG divides pc(2+e), where
c is the nilpotency class of G, which is bounded in terms of p.

Remark
If, for some reason, it is known that the derived length s of the group G in Theorems 1 or 2, or in the Corollary,

is relatively small, then EKh-81 can be used instead to give a possibly better estimate

(p− 1)s − 1

p− 2

for the nilpotency class of G (in Theorems 1′ and 2′).

A smaller bound for the nilpotency class would also imply a smaller bound for the exponent.

Nilpotency in varieties of groups with operators
I proved in 1991 the general nilpotency theorem:

EKh-91:
Suppose that V is a variety of Ω-operator groups given by Ω-laws which define a class c nilpotent variety of
ordinary group if all the operators in these laws are put to be 1. (In other words, the quotient of FΩ, where F is a
free group of this Ω-variety, by the normal closure of Ω is nilpotent of class c.)

If G is a group in V such that the semidirect product GΩ is nilpotent, then G is nilpotent of class 6 c.

Ω-laws are of the form (x±1
i1

)ωi1 · · · (x±1
im

)ωim = 1
where xj are group variables and ωj ∈ Ω.

The condition that GΩ is nilpotent seems strong. But sometimes holds automatically: for example, if both G
and Ω are finite p-groups.

Example. when Ω→ 1 gives nilpotency: V = soluble groups of derived length d with splitting automorphism ϕ
of prime order p.

The law x · xϕ · xϕ2 · · ·xϕp−1

= 1 turns into xp = 1 on trivialization of Ω = 〈ϕ〉,
and it is known that a soluble group of exponent p and of derived length d is nilpotent of class (pd−1)/(p−1).

Similarly, the same arguments as above prove

Theorem 1′′
Suppose that a soluble group FA with normal Sylow p-subgroup F and Hall p′-subgroupA acts by automorphisms
on a finite p-group G in such a manner that for some fixed ϕ1, . . . , ϕp ∈ F we have xϕ1xϕ2 · · ·xϕp = 1 for all
x ∈ G. If CG(A) is soluble of derived length d, then G is nilpotent of (p, d, |A|)-bounded class. Furthermore, the
bound for the nilpotency class can be chosen to be the same as in the caseGp = 1 (given by EKh-Shumyatsky-95).

Generalizations
There is also local nilpotency theorem in EKh-93, which may also have generalizations in the context of

additional group of automorphisms...


