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Generic model theory and Zero-One law
for graphs, groups, fields

Vladimir N. Remeslennikov

Motivation
In my series of lectures I define three new notions:

1. pseudo-theory of a series of finite algebraic structures;

2. generic theory of a series of finite algebraic systems;

3. dimensional function over a partially ordered set.

It will be shown that the definitions above are quite useful in mathematics and applications.

Three series of sinite structures and their theories

1. Let FG be the series of finite graphs, Tfg the theory of finite graphs in the language Lg = {E(x, y)}.

2. Let FF be the series of finite fields and Tff the theory of finite fields in the language Lring = {+,−, ·, 0, 1}.

3. Let FGr be the series of finite groups and Tgr the theory of finite groups in the language Lgr = {·,−1, 1}.

4. Concrete series of graph models of Internet growth.

Main aims of my series of lectures

1. We study general properties which have all structures in a given series.

2. We study not arbitrary properties of structures, but only expressible by first-order formulas.

3. We proof that the general properties of a series maybe formalized as first-order theories in corresponding languages.

It will be considered two types of such theories. Any theory of the first type is called pseudo-finite. A theory of the second
type is called generic. The last type o theory depends on the choice of measure over class of structures.

Time for exercises



Famous facts
Graphs:

1. Tfg > Tg, where Tg is the theory of all graphs.

2. The theories Tfg and Tg are algorithmically undecidable (Lavrov, 1965).

Fields:

1. Tff > Tf , where Tf is the theory of all fields.

2. The theory Tff is decidable (Ax, 1967), but Tf is not.

Groups:

1. Tfgr > Tgr, where Tgr is the theory of all groups.

2. Both Tfgr, Tgr are undecidable.

The proof of strict inclusions of the theories
Graphs: let θ be the sentence: “exactly one vertex has a degree 1, but another ones have degrees 2”.

t t t t t tx1 x2 x3 x4 xn xn+1
. . . . . .

Γ1

The sentence ¬θ holds for all finite graphs. Fields: let θ be the sentence “for any natural n there exists a unique extension
of a degree n”. The sentence θ holds for each finite field. Groups: A counter-example maybe constructed by any finitely
defined but not residually finite group (such groups exist).

Pseudo-finite graphs (fields, groups)
Any infinite model of the theory Tfg (resp. Tff , Tfgr) is called a pseudo-finite graph (resp. field, group).

Theorem. (Follows from Compactness theorem)
The ultraproduct of an infinite number of pairwise non-isomorphic finite graphs (fields, groups) is a pseudo-finite graph (resp.
field, group).
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Pseudo-finite theories for graphs, fields, groups
For graphs: a small information about it.

For groups: see above.

For fields. The theory PTff is well-studied. The main results was proved by J. Ax.

1. There exists a useful (recursive) system of axioms of PTff .

2. PTff is decidable, it follows the decidability of Tff .

3. There exists a nice classification of complete theories for PTff .

4. It were obtained famous results in algebraic geometry derived from the facts above.

Extensions toward generic theory
As the extension of T (K) to PT (K) for a series K is inefficiently in general case, there exists an idea to extend T (K)

toward the generic theory GT (K, µ) which is defined by a probability measure over K.
Let L be a language, ϕ a sentence of L, K a class of L-structures, µ a probability measure defined at measurable subsets

from K. Denote K(ϕ) = {A ∈ K |A |= ϕ}. Define that ϕ is almost surely true with respect to the measure µ if K(ϕ) is
µ-measurable and µ(K(ϕ)) = 1.

The set of all almost surely true sentences with respect to the measure µ is called the µ-generic theory for a class K and
denoted by GT(K, µ).



Zero-One law for series K
The theory GT(K, µ) is always consistent, and its models are called µ-generic.

Moreover if theory GT(K, µ) is complete (i.e. for any sentence ϕ either µ(K(ϕ)) = 0 or µ(K(ϕ)) = 1), it is said that the
class K satisfies the Zer-One law with respect to µ.

Random graphs. Erdõsh-Rényi model
Let us fix a natural n and real p, 0 < p < 1. Let Xn = {1, . . . , n} and Gn be the class of all graphs with the vertex set

Xn. Denote by E(Xn) the set of all edges between the vertices from Xn.

Let us define a probability space G(n, p) over the set Gn by the following. Let p(1e) = p be the probability of the
appearance of an edge e ∈ E(Xn) in the random graph. Hence, p(0e) = 1− p = q is the probability of the absence of an edge
e in the random graph.

Let us fix Y ⊂ E(Xn). The probability of such type of graph equals

p(Y ) = pmqC
2
n−m.

This random model (the binomial distribution with C2
n experiments in fact) of graphs over Gn was offered by Erdõsh in

1959.

Zero-One law for Erdõsh-Rényi model
Let Y be a subset of FG and Yn = Gn ∩ Y . If the limit

lim
n→∞

|Yn|
|Gn|

exists let us call it a limit probability of an event Y and denote by p∞(Y ).

Theorem
For any sentence φ in graph theory the limit above exists and

p∞(φ) ∈ {0, 1}.

Moreover,
p∞(φ) = 1⇐⇒ p∞(¬φ) = 0.

Corollary
In the Erdõsh-Rényi model the generic theory of finite graphs GTfg is complete, and therefore Zero-One law holds.

Questions

Question 1.
The conclusion of the existence of the Zero-One law at the previous slide is not obvious. Indeed, the definition of generic
model deals with a probability measure defined on finite graphs, however in the Erdõsh-Rényi model the probability is defined
only for graph classes Gn, n = 1, 2, . . .

Question 2.
Is it possible define a probability space for the set FG such that the induced measure over Gn coincides with Erdõsh-Rényi
measure?

Answers: both positive
One can define a probability such that p∞ = µ(FG(φ)), where φ is a sentence of graph theory, and µ is a probability

measure on FG. Let X∞ = {1, 2, . . . , k, . . .} and choose 0 < p < 1. Further, for any finite disjoint subsets S, T ⊆ E(X∞)

denote
Cone(S, T ) = {Y ⊆ E(X∞)|S ⊆ Y, Y ∩ T = ∅}.

Put µ(Cone(S, T )) = p|S|(1 − p)|T |. By the Kolmogorov‘s theorem, µ extended to a probability measure. Moreover, the

σ-algebra of µ-measurable sets is generated by all cones конусами Cone(S, T ). It is clear that the restriction of µ from X∞
to Xn = {1, . . . , n} induces the Erdõsh-Rényi model on Gn.

Axioms of the theory GTfg in the Erdõsh-Rényi model
Let Xm = {x1, . . . , xm} and Yn = {y1, . . . , yn} be finite sets of letters and ψn,m the next sentence of graph theory

∀Xm∀Yn∃z (
∧
i,j

(xi 6= yj)→ (
∧
i

E(xi, z) ∧
∧
j

¬E(yj , z)))

Theorem
In the denotations above we have

1. p∞(ψm,n) = 1, therefore the sentences ψm,n hold in all generic models of the theory GTfg;

2. {ψn,m|(n,m) ∈ N2} is the system of axioms for GTfg.



Properties of GTfg in the Erdõsh-Rényi model

Theorem
For the theory GTfg in the Erdõsh-Rényi model the following holds:

• GTfg is countably categorical;

• GTfg is decidable.

As the theory GTfg is countably categorical, there exists a unique (up to ismorphism) generic graph in the Erdõsh-Rényi
model. It is Rado graph.

The construction of Rado graph
Let Γ0 = Γbe an arbitrary graph (not necessary finite). V(Γ) = X0 6= ∅ and F(X0) = {s|sis a finite subset in X0},

Z = {zs| for s ∈ F(X0)}. Define the new graph Γ1 by

X1 = V(Γ1) = X0 ∪ Z.

E(Γ1) = E(Γ0)
⋃

s∈F(X0)

E(zs, s),

where the set E(zs, s) consists of edges which joint the vertex zs with vertices from the set s.
Thus, Γ0 < Γ1.
Let us iterate this operation and obtain the limit graph

Γ∞ =
∞⋃
i=0

Γi.

Proposition
The graph Γ∞ is a model of the theory GTfg.

Properties of Rado graph

1. ultra-transitivity, i.e. it is k-transitive for any natural k;

2. let H be an arbitrary finite graph, then Rado graph contains infinitely many copies of H;

3. the diameter of Rado graph equals 2.

Generic model theory and Zero-One law
for graphs, groups, fields

Vladimir N. Remeslennikov

Generic theory for partial orders
Fix a language L = {≤}. Write axioms:

1. ∀x (x ≤ x);

2. ∀x, y, z (x ≤ y ∧ y ≤ z → x ≤ z);

3. ∀x, y (x ≤ y ∧ y ≤ x→ x = y).

Any structure satisfying the axioms above is called a partial order.

Surprise!

Really,
the formula “there no chains of length greater than three”

∀x0, x1, x2, x3 (
∧

0≤i≤2

xi ≤ xi+1 →
∨

0≤i≤2

xi = xi+1)

belongs to the generic theory!!! See Kleitman D.J., Rothschild B.L. “Asymptotic enumeration of partial orders on a finite
set” for the proof.

It follows that every model (partial order) of the generic theory has at most three levels: L0, L1, L2.



Zero-One Law for graphs and partial orders has the similar proofs

Plan of the proof

1. write extension axioms;

2. prove that any axiom has the measure 1;

3. prove that the generic theory is countable categorical;

4. from the facts of model theory it follows that the generic theory is complete, and Zero-One law holds.

Extension axioms
Note that the relation x ∈ Li is expressible by first order formula.

1. For any j, k, l ≥ 0 there is an axiom saying that for all distinct x0, . . . , xj−1, y0, . . . , yk−1 from L1 and all distinct
z0, . . . , zl−1 ∈ L0 there exists z ∈ L0 not equal to z0, . . . , zl−1 such that∧

i<j

z ≤ xi ∧
∧
i<k

z � yi.

2. For any j, k, l ≥ 0 there is an axiom saying that for all distinct x0, . . . , xj−1, y0, . . . , yk−1 from L1 and all distinct
z0, . . . , zl−1 ∈ L2 there exists z ∈ L2 not equal to z0, . . . , zl−1 such that∧

i<j

z ≥ xi ∧
∧
i<k

z � yi.

The last extension axiom

3 For any j, j′, k, k′, l ≥ 0 there is an axiom saying that for all distinct x0, . . . , xj−1 and y0, . . . , yk−1 from L0, all distinct
x′0, . . . , x

′
j−1 and y′0, . . . , y′k−1 from L2, and all distinct z0, . . . , zl−1 ∈ L1 there exists z ∈ L1 not equal to z0, . . . , zl−1

such that ∧
i<j

xi ≤ z ∧
∧
i<k

yi � z ∧
∧
i<j′

z ≤ x′i ∧
∧
i<k′

z � y′i.

Time for thinking

II. Generic models in the class of sparce graphs
Let λ > 0 be a real number. Denote Kλ = {Γ ∈ FG ||V (Γ)| ≥ λ|E(Γ)|}. K ⊂ FG is called the set of sparse graphs if

there exists a real λ > 0 such that K ⊆ Kλ.

In the classes of sparse graphs the Erdõsh-Rényi model is not useful. For this reason it was develop another probability
models for the class Kλ(n), n = 0, 1, 2, . . .

In these models the probability does not depend on n and satisfies the power-law:

pn =
C

nλ
,

where the constant C gives that the sum of probabilities of all graphs from Kλ(n) equals 1.

The Shelah-Spencer model (1988)
Fix an irrational number 0 < λ < 1. Let Kλ(n) be the set of all λ-sparse graphs with n vertices and pn = C

pλ
. Denote by

Tλ the generic theory for Kλ.

Theorem (Shelah, Spencer, 1988)
For an irrational number 0 < λ < 1 the generic theory Tλ is complete and, therefore, satisfies the Zero-One law.

Properties of Shelah-Spencer model

1. The proof of is based on the next classical result in number theory: the set M(λ) = {a−λb|a, b ∈ N+} is dense in reals;

2. there exists a useful ∀∃∀ - axiomatization of the theory Tλ;

3. Tλ has the dimensional order property (DOP).

Question
Is the generic theory GTh(K) simple (e.g. stable) for any class K from Kλ, 0 < λ < 1.

Answer
No. One can construct a hard (unstable) generic model by Hrushovski’s constructions. For more details see the prepint Justin
Brody "On generic graphs with intrinsic transcendentals".



Observation (due to Barabasi-Albert)
One can consider the Internet as a graph, where the vertices are cites and directed edges are links. Obviously, this graph

(so-called a web-graph) is directed, has multiply edges and loops. One can observe that such graph has the next properties:

1. the web-graph is strongly sparse, i.e. it has only kt edges for t vertices, where k ≥ 1 is a constant;

2. the diameter of the web-graph is only 5–7;

3. the empiric probability that a vertex has a degree d equals c/dλ, where λ ≈ 2.1, c is the normalizing coefficient;

4. if there appears a new cite, it tries to get a link to a popular ones.

Thus, the Erdosh–Renyi model is useless for such graph.

The Bollobas-Riordan model
Let us construct the web-graph in the Bollobas-Riordan model.
Firstly, we define a sequence of random graphs {Gn1}, where the n-th graph has exactly n edges and n vertices. Further,

we obtain the sequence {Gnk}, where the graph Gnk consists of n vertices and kn edges.
Put that G1

1 has a vertex 1 and a loop (1, 1). Assume the graph Gn−11 is constructed, it has the vertices {1, 2, . . . , n− 1}
and n − 1 edges. Add a vertex n and an edge (n, i) for some vertex i. A loop (n, n) appears with the probability 1

2n−1 , an
edge (n, i) appears with the probability deg i

2n−1 , where deg i is the degree of the vertex i. Such random process is well-defined,
as

n−1∑
i=1

deg i

2n− 1
+

1

2n− 1
=

2n− 2

2n− 1
+

1

2n− 1
= 1.

Now we define the graph Gnk
Take Gkn1 . It is a graph with kn vertices and kn edges. Divide the set of vertices into the parts of a size k:

{1, . . . , k}, {k + 1, . . . , 2k}, . . . , {k(n− 1) + 1, . . . , kn}.

Each piece collapses into a single vertex preserving the edges, i.e. if there are edges between vertices in one part, we obtain
multiply loops. The edges connecting different parts become multiply edges in the new graph.

Iterate this procedure, we obtain the web-graph.
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Dimensional functions over partially ordered sets
Vladimir N. Remeslennikov

Motivation: Classical origins
Let F be a field. IrAlS = {Y ⊂ Fn, Y is algebraic set}.

Definition
dim(Y ) = max{l ∈ N : Yl ⊂ Yl−1 ⊂ . . . ⊂ Y1 ⊂ Y0 = Y,

where Yi irreducible algebraic set}.

Question
Is there a good definition of dimension for arbitrary algebraic structure?

Answer
Yes. There exist good definitions if algebraic structure is equationally noetherian.



Motivation: Origins from combinatorial algebra
Let A be an alphabet, A∗ be the free monoid and F (A) be the free group. Most of problems from discrete optimization

and algorithmical group theory can be formulated in terms of A∗ and F (A).

Question
Let R ⊂ A∗ or R ⊂ F (A). Is there a good definition of dimension for such R?

Answer
Yes. If R is regular set.

Motivation: Origins from model theory

Question
How to define a measure for series K of finite algebraic structures such that GTh(K) has a good description?

Answer
Sometimes it is possible. And more the better such examples!

Partially ordered sets

Definition
A partial order is a binary relation ≤ over a set M such that

• ∀a ∈M a ≤ a (reflexivity);

• ∀a, b ∈M a ≤ b and b ≤ a implies a = b (antisymmetry);

• ∀a, b, c ∈M a ≤ b and b ≤ c implies a ≤ c (transitivity).

Definition
Set M with a partial order is called a partially ordered set (poset).

Linearly ordered abelian groups

Definition
A set A equipped with addition + and a linear order ≤ is called linearly ordered abelian group if

1. 〈A,+〉 is an abelian group;

2. 〈A,≤〉 is a linearly ordered set;

3. ∀a, b, c ∈ A a ≤ b implies a+ c ≤ b+ c.

Definition
The semigroup A+ of all nonnegative elements of A is

A+ = {a ∈ A | 0 ≤ a}.

Dimensional functions
Let M be a poset and A be a linearly oredered abelian group.

Definition
Function d : M → A+ is called A-dimensional function over M if

1. ∀x, y ∈M if x < y in M , then d(x) < d(y) in A.

2. ∀x, y ∈M ∃x′, y′ such that if d(x) < d(y), then d(x) ≤ d(x′), d(y′) ≤ d(y) and x′ < y′.

Definition
A-dimensional function over M is called strongly dimensional function if

1. ∀x, y ∈M ∃x′, y′ such that if d(x) < d(y), then d(x) = d(x′), d(y) = d(y′) and x′ < y′.

Dimensional functions: axioms

Lemma
Let a function d : M → A+ satisfies only the first axiom of dimensional function:

1. ∀x, y ∈M if x < y in M , then d(x) < d(y) in A.

Then there exists a function d′ : M → A+, satisfying both axioms, that is dimensional function.



Flows
Dimensional function d : M → A+ defines equivalence d̃ over M in the following way

m1 ∼d m2 ↔ d(m1) = d(m2)

and is a homomorphism in the category of posets. Let us [m1] ≤d [m2]↔ d(m1) ≤ d(m2).

Fact
M/ ∼d is linearly ordered set.

Definition
M/ ∼d is called d-flow. Order type of d-flow is denoted by πd(M).

Definition
Element d(m) from A is called A-dimension of m.

Equivalence of dimensional functions
Let M be an poset and d1, d2 are dimensional functions over M with values in some linearly ordered abelian groups.

Definition
Dimensional functions d1, d2 are equivalent (d1 ∼ d2) if order types πd1(M) and πd2(M) are isomorphic.

Ordinal dimensional functions

Definition
Dimensional function d : M → A+ is called ordinal if πd(M) is a well ordered set.

Definition
Poset M is called a set of ordinal type if there exist a strongly dimensional function for it.

Dimensional functions over Artin sets

Definition
Poset M is called Artin set if any chain a1 > a2 > . . . in M is finite.

Theorem

1. Every Artin set is a poset of ordinal type.

2. For every Artin set there exists unique up to equivalence strongly dimensional function.

Corollary
Let M be a finite poset. There exists a dimensional function over M and every two such functions are equivalent.

Non-equivalent dimensional functions
L1 = {[0, 1], 2, 3, [4, 5]}, L2 = {[6, 7], 8, [9, 10]} with natural order. M = L1 ∪ L2. Any a ∈ L1 and b ∈ L2 are not

comparable.

Proposition
There are two non-equivalent dimensional functions over M .

d1(x) =

{
x, x ∈ L1,
x− 1, x ∈ L2.

d2(x) =

{
x, x ∈ L1,
x− 10, x ∈ L2.

πd1(M) = {[0, 1], 2, 3, [4, 6], 7, [8, 9]}. πd2(M) = {[−4,−3],−2, [−1, 1], 2, 3, [4, 5]}.

Existence of dimensional functions

Theorem
For every poset M there exists a linearly ordered abelian group A and dimensional function d : M → A+.

Corollary
For every poset M there exists a linearly ordered field F and dimensional function d : M → F+.

Question
Is it true that for every poset there exists strongly dimensional function?



Geometric dimensional functions

Theorem
Let d1 : M1 → A be a dimensional function over poset M1 and d2 : M2 → A be a dimensional function over poset M2. Then
the function d : M1 ×M2 → A defined as

∀m1 ∈M1 ∀m2 ∈M2 d((m1,m2)) = d1(m1) + d2(m2)

is dimensional function over M1 ×M2.

Lattice dimensional functions
Let M be a lattice and A be a linearly ordered abelian group.

Definition
Function d : M → A+ is called lattice A-dimensional function if

1. d is A-dimensional function,

2. ∀x, y ∈M d(x ∨ y) + d(x ∧ y) = d(x) + d(y).

Theorem
Let M be locally finite semimodular lattice. Then there exists a linearly ordered abelian group A and lattice A-dimensional
function over M .

Corollary
Let M be distributive (Boolean) lattice. Then there exists a linearly ordered abelian group A and lattice A-dimensional
function over M .

Lattice dimensional functions over interval Boolean lattice

Question
Let S be countable set and P (S) be the Boolean lattice of subsets of S. When every two dimensional functions over P (S)
are equivalent?

Application: Universal algebraic geometry
Let B be an algebraic structure in a functional language and Y ⊆ Bn is a non-empty subset. Denote by Irr(Y ) the family

of all irreducible algebraic over B subsets of Y .

If B satisfies the Unification theorems (E.Daniyarova, A.Miasnikov, V.Remeslennikov), then Irr(Y ) is poset and we can
define an ordinal dimensional function dim over Irr(Y ).

Ordinal dimensional function dim let us to use induction to build universal algebraic geometry over B.

References
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Asymptotic classification of subsets of F (X)
Vladimir N. Remeslennikov

Graphs
Consider a Cayley graph C(F,X) for a free group F generated by finite set X, let |X| = m.

Pic. 1. Cayley graph for F = F (a, b).

Generation of random words in F (X)
Let F = F (X) be a free group with a basis X = {x1, . . . , xm}. We use the following no-return random walk on the Cayley

graph of F with respect to the generating set X. We start at the identity element 1 and either do nothing with probability
s ∈ (0, 1], or move to one of 2m adjacent vertices with equal probabilities (1− s)/2m. If we are in a vertex v 6= 1, we either
stop at v with probability s (and return the value v as the output), or move with the probability 1−s

2m−1 to one of the 2m− 1

adjacent vertices lying away from 1, thus producing a new freely reduced word vx±1i .



It is easy to see that the probability µs(w) for our process to terminate at a word w is given by the formula

µs(w) =
s(1− s)|w|

2m(2m− 1)|w|−1
,

and
µs(1) = s.

Hence the length of words produced by our process are distributed according a geometric law.

Probability measures of R ⊆ F (X)
Let R ⊆ F (X). Denote by nk(R) = |R ∩ Sk| and by fk(R) the relative frequencies

fk =
nk
|Sk|

,

where Sk = {w||w| = k} is a sphere of the radius k. Put

µs(R) =
∑
w∈R

µs(w)

or equivalently

µs(R) = s

∞∑
k=0

fk(1− s)k

µs is an atomic probabilistic measure. Hence, there exists a family of measures {µs|s ∈ (0, 1]} defined over the subsets of
F (X).

λ-measure for R
Put s = 0 and obtain a non-stopping random walk on the Cayley graph C(F,X). In this case the probability λ(w) that

the walker reaches an element w ∈ F in |w| steps is equal to

λ(w) =
1

2m(2m− 1)|w|−1
, if w 6= 1, and λ(1) = 1.

This gives rise to an atomic measure

λ(R) =
∑
w∈R

λ(w) =

∞∑
k=0

fk(R).

This measure is not probabilistic (as λ(F ) =∞). We shall call λ the frequency measure on F . If R is λ-measurable (i.e.
λ(R) <∞) then fk(R)→ 0 when h→∞, so intuitively, the set R is “small” in F .

Proposition
For any λ-measurable subset R ⊆ F there exists a finite subset K ⊆ F with λ(R) = λ(K).

The λ-measure is multiplicative:
λ(u ◦ v) = λ(u)λ(v) ∀u, v ∈ F (X).

Generating function of a subset R ⊂ F (X)
Let R be a subset of F = F (X) and Sk is a sphere of radius k in the Cayley graph of F (X).

Denote by fk =
|R ∩ Sk|
|Sk|

so called relative frequencies of R in F .

The generating function for R is a formal series in R[[t]]:

gR(t) =
∑

fkt
k.

Examples
gF (t) = 1

1−t , gwF (t) = 1
2m(2m−1)|w|−1

1
1−t , where wF = {w ◦ v|v ∈ F} is a cone.



Cesaro density
For a subset R of F we define the limit measure µ0(R) (the Cesaro density):

µ0(R) = lim
s→0+

µs(R) = lim
s→0+

s

∞∑
k=0

fk(1− s)k.

The function µ0 is additive. It is easy to construct a set R such that µ0(R) does not exist.

From the theorem by Hardy and Littlewood it follows that µ0 can be computed as the Cesaro limit

µ0(R) = lim
n→∞

1

n
(f1 + . . .+ fn).

Examples

• F = F1 = Z, R = 2Z;

• H is a subgroup of finite index in F (X), µ0(H) = 1
|F :H| .

Asymptotic classification of subsets
Now we introduce a classification of subsets in F :

• thick subsets: µ0(R) exists and µ0(R) > 0;

• sparse subsets: µ0(R) = 0 and λ(R) exists;

• subsets of intermediate density: µ0(R) = 0 but λ(R) does not exist;

• singular subsets: µ0(R) does not exist.

Rational and algebraic subsets
Let R be a subset of F . By the definition, its generating function gR(t) is analytic on (0, 1). The subset R is called rational

(algebraic) if so is gR(t). We say R is smooth if gR(t) can be analytically extended to a neighbourhood of 1.

Poles
It is well-known fact that singular points of an algebraic function are either poles or branching points. A function gR(t)

has no any singularity at 1 or it has a pole if gR(t) is rational.
Again, by the Hardy–Littlewood theorem µ0(R) = res1 gR(t). We have the formulas:

gF (t) =
1

1− t
, µ0(F ) = 1,

gwF (t) =
1

2m(2m− 1)|w|−1
1

1− t
,

µ0(wF ) =
1

2m(2m− 1)|w|−1
,

where wF = {w ◦ v|v ∈ F} is a cone.

Why?
Why the function 1

(1−z)2 is not generating for some regular subset R ⊆ F (X)?
A generation function for regular set has

• either no singularity at 1 (sparse set),

• or a pole of order 1 (thick set).

But 1
(1−z)2 has no.

Dimensional functions for regular subsets
Let R be a regular subset from F (X) and A =

←−−−−
Q×Q the abelian group with left lexicographical order. For any element

of the class Sreg = {R|R is regular} we define a map

dim: Sreg → A+

by
dimR = (µ0(R), λ(R′)),

where the sparse set R′ is effectively constructed from R.



Result

Theorem
The map dim: Sreg → A+ is a dimensional function.

Algorithm for computing of dim(R)

1. Compute gR(t) = h(t)
f(t) .

2. If f(1) 6= 0, then µ0(R) = 0 and λ(R) = gR(1) ⇒ dim(R) = (0, λ(R)).

3. If f(1) = 0, then f(t) = (1− t)f0(t) and f0(1) 6= 0.

4. Compute res1(gR(t)) = c, 0 < c ≤ 1.

5. Find r(t) = gR(t) − c
1−t . Function ±r(t) is generating function for regular set R′, which are from decomposition of

automaton A(R). And the set R′ is sparse. Compute λ(R′) <∞.

6. dim(R) = (c,±ελ(R′)).
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Asymptotic classification of regular sets
Vladimir N. Remeslennikov

Asymptotic classification of regular sets

Part I. Regular sets
1 Regular sets
Finite automata

Let X = {x1, . . . , xn} be a finite alphabet, X∗ be the free monoid generated by X and F (X) be the free group generated
by X.

A finite automaton A is a finite labelled oriented graph (possibly with multiple edges and loops). We refer to its vertices
as states; some states called initial, some states called final.

Assume that every edge of the graph is labelled by one of symbols x±1, x ∈ X. A path in A is a set of edges e0, . . . , en,
such that for each i = 1, . . . , l the end point ei−1 is equal to the starting point of ei. Reading labels on edges along the path
consequently we get the label of the path.

Finite automata

Pic. 1. Finite automaton A.



Facts about regular sets
The language accepted by A is a set L = L(A) of labels of paths from an initial state to an final state.

An automaton is said to be deterministic if for any state there is at most one arrow with the given label exiting from
the state.

A regular set over X∗ is a language accepted by a finite deterministic automaton.

Finite automata
Example 1. The automaton A accept the language L1 = L1(A) = {a∗b}

⋃
{a∗c−1}. Therefore, the language L1 over the

alphabet (a, b) is regular.

Example 2. The language L2 = {anbn|n is a positive integer} over the alphabet (a, b) is nonregular.

Facts about regular sets
If A and B are regular subsets of F , then

• 1) sets A ∩B, A ∪B, ArB are regular,

• 2) A∗ is regular;

• 3) A is regular, where A is the prefix closure of A, i.e. the set of all initial segments of all words in A;

• 4) A ◦B is regular, where a ◦ b means that there is no cancellation between a ∈ A and b ∈ B.

Adjacency matrix
One can associate with the automaton A it’s adjacency matrix A by taking n × n matrix and writing the number of

arrows from state i to j in the position (i, j), where n is the number of states of A.

Fact 1. The number of different paths of length k from i to j is equal to (Ak)i,j .

Fundamental matrix
Set T = tA and let B = T + T 2 + . . . be the matrix with entries bij from the ring of formal power series R[[t]].

Then B(E − T ) = T and B = T (E − T )−1.

The matrix B is called fundamental matrix of A.

Fact 2. Entries bij of B are rational functions of t.

Generating function of a regular set
Let R be a subset of F = F (X) and Sk is a sphere of radius k in the Cayley graph of F (X).

Denote by fk =
|R ∩ Sk|
|Sk|

so called relative frequencies of R in F .

The generating function for R is a formal series in R[[t]]:

gR(t) =
∑

fkt
k.

Generating function of a regular set
Theorem 1. The generating function of a regular set is a rational function of t.

Proof. Indeed,

gR(t) =
∑

i∈I,j∈J
bij ,

where I is the set of all initial states, and J is the set of all final states of A.
Then the result follows from Fact 2. •



λ−measure
We introduce atomic measure on subsets R of F = F (X), rank(F ) = m <∞:

λ(R) =

∞∑
k=0

fk(R).

In particular, if R = {w} and |w| = k, k 6= 0, then λ(R) =
1

2m(2m− 1)k−1
,

It is easy to check that λ(R) =
∑
w∈R

λ(w) =
∞∑
k=0

fk(R), i.e. λ(R) is an atomic measure indeed. We will call it frequency

measure on F .

λ−measurable sets
We say R is λ−measurable, if λ(R) is finite.

A set R is termed exponentially λ−measurable, if fk(R) ≤ qk for all sufficiently large k and positive constant q < 1.

Fact 3.

• (i) If R ⊆ F (X) is λ−measurable, then R is negligible. The reverse is not always true.

• (ii) The measure λ is additive, but not σ-additive.

Cones
A cone C(w) with the handle w is a set of all elements in F containing the given word w as initial segment. Obviously,

cones are regular sets.

Pic. 2. Finite automaton for cones.

Asymptotic classification of regular sets
Theorem 2. [Borovik, Miasnikov, Remeslennikov, 2003] Let R be a regular subset of F = F (X). Then there are only

two possibilities:

i) The prefix closure R of R contains a cone, or

ii) R is λ−measurable.

Asymptotic classification of regular sets
Theorem 2’. [Borovik, Frenkel, Miasnikov, Remeslennikov, 2003, 2005] Let R be a regular subset of F = F (X). Then

there are only two possibilities:

i) The prefix closure R of R contains a cone, or

ii) R is exponentially λ−measurable.

Asymptotic classification of regular sets

Part II. Calculating of λ−measure



2 Calculating of λ−measure
Discrete-time Finite Markov chains

Let

1) S = (s0, s1, . . . , sn) be a finite number of states;

2) P be a stochastic transition matrix;

3) π = (q0, q1 . . . , qn) be a stochastic initial vector.

Example of a Markov process
Example 3. Let S = (s0, . . . , s4).

Assume that if the process reaches state s0 or s4 it remains there from that time on and let the transition matrix is given
by

Track of the process
Let us assume that the process starts in state s2.

Then π = (0, 0, 1, 0, 0) and

Pic.2. Track of the process.

Interpretation of P k
Fact 4.

i) Powers P k, k = 1, 2, . . . of a transition matrix P are stochastic matrices;

ii) entries pki,j of P k represent a probability of a transition from si to sj in k steps.

Binary relation on states
Let � be a binary relation on S. Namely, set si � sj iff the process can go from si to sj (not necessarily in one step).

The states are divided into equivalence classes and let ∼ be the corresponding equivalence relation on S, defined by �.

Let [s] be a equivalence class with a representative s;

S = S/∼ be a quotient set of ∼ and

“≤” be a partial ordering on S, induced by �.



Classification of states
States from the minimal equivalence classes for the system < S,≤> are called ergodic states.

The remaining states called transient.

It is clear that if the process enters the equivalence class of some ergodic state, it can never leave this class, while if it
leave a transient state, it will never return to its equivalence class again.

If the equivalence class of some ergodic state contains only one element, this state is called absorbing.

A canonical form for the transition matrix
Let us renumber states of a Markov chain such that ergodic states (T−states) come first, and then come transient states.

In this case P looks like

P =

(
T 0
R Q

)
and

P k =

(
T k 0
R′ Qk

)
Example

For instance, for Example 3 we obtain

Probability theorem
Theorem 3. In any finite Markov chain, no matter where the process starts, the probability after k steps that the process

is in an ergodic state tends to 1 as k tends to infinity.

Corollary 1. There are numbers b > 0, 0 < c < 1 such that

pkij ≤ bck

for any transient states si and sj .

Fundamental matrix
A chain, all of whose ergodic states are absorbing, is called an absorbing chain.

Fact 5. For any absorbing Markov chain lim
k→∞

Qk = 0 and hence E−Q has an inverse and (E−Q)−1 = E+Q+Q2 + . . . .

For an absorbing Markov chain we define the fundamental matrix to be

N = (E −Q)−1 = E +Q+Q2 + . . . .

Applications of fundamental matrix
Theorem 4. If bij is the probability of the process to leave a transient state si and stop at an absorbing state sj , then

B = {bij} = NR,

where R is the block in P and N is the fundamental matrix of a process.



Special automata
A deterministic automaton A we will call special, if

1.) it has only one initial state v0 and one final state vf , v0 6= vf ;

2.) there are no arrows entering the initial state v0 and there are no arrows exiting from the final state vf ;

3.) for any state v of A, all arrows which enter v have the same label x ∈ X ∪X−1 and arrows exiting from v cannot have
label x−1.

4.) there is at least one state v 6= vf , v0 such that there is an edge labelled a entering this state but some label from
X ∪X−1 \ {a} is not present on arrow exiting from v.

Calculation of λ−measure for special automata
Theorem 5. Let A be a special automaton and L = L(A). Then

λ(L(A)) < 1.

Sketch of the proof of Theorem 5.
We form an absorbing Markov chain for A:

S contains all states of A together with additional state D;

initial distribution
π = (0 . . . 1 . . . 0)

v0

transition matrix entries

pij =
number of arrows from si to sj

2|X| − 1

and pDD = 1.

Lemma
Lemma 1. Let A be a special automaton and L = L(A). Then λ(L(A)) is a probability of the process to stop in vf .

Since the probability to stop at D is equal to zero, then λ(L(A)) < 1.

The End. Thank you!


