IIpeauncioBue

IIpencraBiieHHbI coraiipl b JIEKINiT 10 FEHEPUIECKUM TEOPUIM JIOTUKU [IEPBOTO MOPSIAKA U Pa3MePHBIM (DYHKIUAM, IPOIH-
TaHHBIX aBTOPOM Ha MOJIOJIE?KHOI IIKOJIE « AJITOPUTMUYECKUE BOIIPOCHI TEOPUH I'PYIIIT U CMEXKHBIX obJjiacTeii», dpJiraros 2012.
CojiepKanue Tpex U3 HUX OCHOBAHO HA CTAThsIX aBTOPA JIEKIWHA, HAMCAHHBIX cOBMeCTHO ¢ A.BopoBukom, A.MsiCHUKOBBIM,
E.®penkens u A.PribaioBbiv:

1. A.V.Borovik, A.G. Myasnikov, V.N. Remeslennikov, "Multiplicative measures on free group"// Algebra and Computation,
Vol. 13, No. 6, 2003, pp. 705-731;

2. V.N.Remeslennikov, A.N.Rybalov. Dimensional functions over partially ordered sets // in preparation;

3. A.T. Msacuukos, B. H. Pemecnennukos, E. B. ®penkesnb, «CBoGo/HbIE IPOU3BEICHUS I'PYIII ¢ OObEIUHEHUEM: CTPATH-
dbukalmsa MHOKECTB HOPMAJILHBIX (GOPM U oneHKry, OyHumaMentT. 1 npukJI. Marem., 16:8 (2010), 189-221;

U KHHIaX, yKa3aHHBIX B CIIMCKe jmTepaTypbl. Marepuasn nmo renepuueckuM TeopusiM u (0,1)-3aK0HY 3aMMCTBOBaH W3
HECKOJIbKMX 0030POB M KHUT Ha 3TY TEMY, YKa3aHHBIX B CIUCKE JIUTEpaTyphbl. MaTepuas mo MoIesisiM poCcTa HHTEPHETa, B3AT
u3 0630pa

e A.M. Paiiropojckuii. Mogenu ciy4daiinbix rpados u ux npumenenus // TPYIBI M®TU. - 2010. - Tom 2, Ne4, C.130-
140.

TeOpI/IH IICEeBJJOKOHCYHDBIX HOJ'IeI7I, B By TEXHUYIECKUX CJIOYKHOCTe MaTepuaJia, TOJIbKO 0003HaYEHA B 9TUX JICKITHUAX. ,H.J'IS{
TeX, KTO XOTeJI OBl IIO3HAKOMUTLCS C TOMH Teopmeﬁ A PEKOMEHYIO CTaTbIO

e J.Ax, The elementary theory of finite fields // Annals of Math., 83 (1968), 239-271.

u crareu HO.JI.Epmosa 60-x To0B mpomnuioro croserns.

Generic model theory and Zero-One law
for graphs, groups, fields

Vladimir N. Remeslennikov

Motivation
In my series of lectures I define three new notions:

1. pseudo-theory of a series of finite algebraic structures;
2. generic theory of a series of finite algebraic systems;
3. dimensional function over a partially ordered set.

It will be shown that the definitions above are quite useful in mathematics and applications.

Three series of sinite structures and their theories

1. Let F'G be the series of finite graphs, T, the theory of finite graphs in the language L, = {E(x,y)}.
2. Let F'F be the series of finite fields and Ty the theory of finite fields in the language Lying = {4+, —,,0,1}.

3. Let FGr be the series of finite groups and 7T}, the theory of finite groups in the language L, = {-, ', 1}.

4. Concrete series of graph models of Internet growth.

Main aims of my series of lectures

1. We study general properties which have all structures in a given series.
2. We study not arbitrary properties of structures, but only expressible by first-order formulas.

3. We proof that the general properties of a series maybe formalized as first-order theories in corresponding languages.

It will be considered two types of such theories. Any theory of the first type is called pseudo-finite. A theory of the second
type is called generic. The last type o theory depends on the choice of measure over class of structures.

Time for exercises



Famous facts
Graphs:

1. Tyg > T,, where Ty is the theory of all graphs.

2. The theories Ty, and T, are algorithmically undecidable (Lavrov, 1965).

Fields:
1. Tyy > Ty, where T} is the theory of all fields.
2. The theory Ty is decidable (Ax, 1967), but T} is not.

Groups:
1. Ttgr > Tyr, where T, is the theory of all groups.

2. Both T4, Ty, are undecidable.

The proof of strict inclusions of the theories
Graphs: let 6 be the sentence: “exactly one vertex has a degree 1, but another ones have degrees 2”.
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The sentence —6 holds for all finite graphs. Fields: let 6 be the sentence “for any natural n there exists a unique extension

of a degree n”. The sentence # holds for each finite field. Groups: A counter-example maybe constructed by any finitely

defined but not residually finite group (such groups exist).

Pseudo-finite graphs (fields, groups)
Any infinite model of the theory Ty, (vesp. Ty, T}gr) is called a pseudo-finite graph (resp. field, group).

Theorem. (Follows from Compactness theorem)
The ultraproduct of an infinite number of pairwise non-isomorphic finite graphs (fields, groups) is a pseudo-finite graph (resp.

field, group).

Infinite graphs

Iy Pseudo-finite
°

graphs

Pseudo-finite theories for graphs, fields, groups
For graphs: a small information about it.

For groups: see above.

For fields. The theory PT}y is well-studied. The main results was proved by J. Ax.
1. There exists a useful (recursive) system of axioms of PTyy.

2. PTyy is decidable, it follows the decidability of 1.

3. There exists a nice classification of complete theories for PT .

4. It were obtained famous results in algebraic geometry derived from the facts above.

Extensions toward generic theory
As the extension of T(K) to PT(K) for a series K is inefficiently in general case, there exists an idea to extend T'(K)

toward the generic theory GT'(K, ) which is defined by a probability measure over K.
Let L be a language, ¢ a sentence of L, K a class of L-structures, u a probability measure defined at measurable subsets
from K. Denote K(p) = {A € K| A | ¢}. Define that ¢ is almost surely true with respect to the measure p if K(p) is

p-measurable and p(K(p)) = 1.
The set of all almost surely true sentences with respect to the measure p is called the p-generic theory for a class K and
denoted by GT(K, p).



Zero-One law for series K
The theory GT(K, ) is always consistent, and its models are called pu-generic.

Moreover if theory GT(K, 1) is complete (i.e. for any sentence ¢ either p(K(¢)) =0 or u(f(p)) = 1), it is said that the
class K satisfies the Zer-One law with respect to p.

Random graphs. Erdosh-Rényi model
Let us fix a natural n and real p, 0 < p < 1. Let X,, = {1,...,n} and G,, be the class of all graphs with the vertex set
X,,. Denote by E(X,,) the set of all edges between the vertices from X,,.

Let us define a probability space G(n,p) over the set G, by the following. Let p(1.) = p be the probability of the
appearance of an edge e € E(X,,) in the random graph. Hence, p(0.) = 1 —p = ¢ is the probability of the absence of an edge
e in the random graph.

Let us fix Y C E(X,,). The probability of such type of graph equals
2 —m
p(Y) = p"qS

This random model (the binomial distribution with C2? experiments in fact) of graphs over G,, was offered by Erdash in
1959.

Zero-One law for Erdosh-Rényi model
Let Y be a subset of G and Y,, = G, NY. If the limit
Y,
lim ¥l

n— oo |G"‘

exists let us call it a limit probability of an event Y and denote by po (V).

Theorem
For any sentence ¢ in graph theory the limit above exists and

poo(@b) € {07 1}'
Moreover,
poo(¢) =1l Poo("¢) =0.

Corollary
In the Erdosh-Rényi model the generic theory of finite graphs GT ¢, is complete, and therefore Zero-One law holds.

Questions

Question 1.

The conclusion of the existence of the Zero-One law at the previous slide is not obvious. Indeed, the definition of generic
model deals with a probability measure defined on finite graphs, however in the Erdosh-Rényi model the probability is defined
only for graph classes G,, n=1,2,...

Question 2.
Is it possible define a probability space for the set FG such that the induced measure over G,, coincides with Erdosh-Rényi
measure?

Answers: both positive
One can define a probability such that p. = u(FG(¢)), where ¢ is a sentence of graph theory, and p is a probability
measure on FG. Let Xoo = {1,2,...,k,...} and choose 0 < p < 1. Further, for any finite disjoint subsets S,T C F(X)

denote
Cone(S,T) ={Y CE(X.)|SCY,YNT = 0}.

Put p(Cone(S,T)) = pl3l(1 — p)I”!. By the Kolmogorov‘s theorem, p extended to a probability measure. Moreover, the

o-algebra of p-measurable sets is generated by all cones konycamu Cone(S,T'). It is clear that the restriction of p from X,
to X, = {1,...,n} induces the Erdésh-Rényi model on G,,.

Axioms of the theory GT/, in the Erdosh-Rényi model
Let X,, = {z1,...,zn} and Y, = {y1,...,yn} be finite sets of letters and ,, ., the next sentence of graph theory

VX VY32 (N (@i # y;) = (N E(xi2) A \=E(y;,2)))
1,7 % J
Theorem
In the denotations above we have

1. Poo(¥mn) = 1, therefore the sentences ¥y, , hold in all generic models of the theory GT,;
2. {¢n,m|(n,m) € N?} is the system of axioms for GTy,.



Properties of GT;, in the Erdosh-Rényi model

Theorem
For the theory GT/, in the Erdosh-Rényi model the following holds:

e GTy, is countably categorical;

o GTy, is decidable.

As the theory GT, is countably categorical, there exists a unique (up to ismorphism) generic graph in the Erdésh-Rényi
model. It is Rado graph.

The construction of Rado graph
Let Iy = I'be an arbitrary graph (not necessary finite). V(I') = Xy # 0 and F(Xy) = {s|sis a finite subset in X},
Z = {z,| for s € F(Xo)}. Define the new graph I'; by

X, =V(I)=X,UZ

ET)=ETo) |J E(z.s),
SEF(Xo)

where the set E(zg, s) consists of edges which joint the vertex zs with vertices from the set s.

Thus, I'y < T'y.
Let us iterate this operation and obtain the limit graph
o0
I = JTu
i=0
Proposition

The graph I'¢ is a model of the theory GT,.

Properties of Rado graph
1. ultra-transitivity, i.e. it is k-transitive for any natural k;
2. let H be an arbitrary finite graph, then Rado graph contains infinitely many copies of H;

3. the diameter of Rado graph equals 2.

Generic model theory and Zero-One law
for graphs, groups, fields

Vladimir N. Remeslennikov

Generic theory for partial orders
Fix a language L = {<}. Write axioms:

1. Va (z < x);
2. Vr,y,z (x <yAy<z—x<2);
3. Vr,y(x <yAhy<z—z=y).

Any structure satisfying the axioms above is called a partial order.

Surprise!
Really,
the formula “there no chains of length greater than three”
Vo, 21, 72,73 ( /\ T < Tip1 = \/ T = Tiy1)

0<i<2 0<i<2

belongs to the generic theory!!! See Kleitman D.J., Rothschild B.L. “Asymptotic enumeration of partial orders on a finite
set” for the proof.

It follows that every model (partial order) of the generic theory has at most three levels: Lo, L1, Lo.



Zero-One Law for graphs and partial orders has the similar proofs
Plan of the proof

1. write extension axioms;

2. prove that any axiom has the measure 1;

3. prove that the generic theory is countable categorical;

4. from the facts of model theory it follows that the generic theory is complete, and Zero-One law holds.

Extension axioms
Note that the relation € L; is expressible by first order formula.

1. For any j,k,1 > O there is an axiom saying that for all distinct zo,...,2;-1,%0,...,yx—1 from L; and all distinct
205,211 € Lg there exists z € Ly not equal to zg,...,2;_1 such that
/\zﬁxi/\/\zfyi.
i<j i<k
2. For any j,k,l > 0 there is an axiom saying that for all distinct xo,...,%;-1,¥0,...,Yk—1 from L; and all distinct
20,...,21—1 € Lo there exists z € Ly not equal to zg, ..., 2,1 such that
/\Zin/\/\Z/)éyi.
i<j i<k

The last extension axiom

3 For any j,j',k,k’,1 > 0 there is an axiom saying that for all distinct xo,...,z;_1 and yo, ..., yk—1 from L, all distinct
o, -,y and yp, ...,y from Lo, and all distinet zo,...,2-1 € Ly there exists z € Ly not equal to zo,...,z-1
such that

/\xigz/\/\yifz/\ /\2§ng /\ z £y,
i<j i<k i<y’ i<k’

Time for thinking

II. Generic models in the class of sparce graphs
Let A > 0 be a real number. Denote Ky = {I" € FG ||[V(I')| > ME()|}. K C FG is called the set of sparse graphs if
there exists a real A > 0 such that K C KC,.

In the classes of sparse graphs the Erdosh-Rényi model is not useful. For this reason it was develop another probability
models for the class Ky(n), n=0,1,2,...

In these models the probability does not depend on n and satisfies the power-law:

e
pn*n/\v

where the constant C' gives that the sum of probabilities of all graphs from K, (n) equals 1.

The Shelah-Spencer model (1988)
Fix an irrational number 0 < A < 1. Let K, (n) be the set of all A-sparse graphs with n vertices and p,, = 1%. Denote by

T* the generic theory for Ky.

Theorem (Shelah, Spencer, 1988)
For an irrational number 0 < A < 1 the generic theory 7* is complete and, therefore, satisfies the Zero-One law.

Properties of Shelah-Spencer model
1. The proof of is based on the next classical result in number theory: the set M(\) = {a — AbJa,b € NT} is dense in reals;
2. there exists a useful V3V - axiomatization of the theory T?;

3. T* has the dimensional order property (DOP).

Question
Is the generic theory GTh(K) simple (e.g. stable) for any class K from Ky, 0 < A < 1.

Answer
No. One can construct a hard (unstable) generic model by Hrushovski’s constructions. For more details see the prepint Justin
Brody "On generic graphs with intrinsic transcendentals".



Observation (due to Barabasi-Albert)
One can consider the Internet as a graph, where the vertices are cites and directed edges are links. Obviously, this graph
(so-called a web-graph) is directed, has multiply edges and loops. One can observe that such graph has the next properties:

1. the web-graph is strongly sparse, i.e. it has only kt edges for t vertices, where k > 1 is a constant;
2. the diameter of the web-graph is only 5-7;
3. the empiric probability that a vertex has a degree d equals ¢/d*, where \ ~ 2.1, c is the normalizing coefficient;

4. if there appears a new cite, it tries to get a link to a popular ones.

Thus, the Erdosh-Renyi model is useless for such graph.

The Bollobas-Riordan model

Let us construct the web-graph in the Bollobas-Riordan model.

Firstly, we define a sequence of random graphs {G7}, where the n-th graph has exactly n edges and n vertices. Further,
we obtain the sequence {G}}}, where the graph G} consists of n vertices and kn edges.

Put that G} has a vertex 1 and a loop (1,1). Assume the graph G7 ! is constructed, it has the vertices {1,2,...,n — 1}
and n — 1 edges. Add a vertex n and an edge (n,4) for some vertex i. A loop (n,n) appears with the probability Tl—lﬂ an

edge (n, i) appears with the probability j;-‘i i, where deg i is the degree of the vertex i. Such random process is well-defined,
as

’fdegi 1 _m-2 1,

Zm—-1 2n-1 2n-1 2n-1

Now we define the graph G}
Take G™. It is a graph with kn vertices and kn edges. Divide the set of vertices into the parts of a size k:

(Lo kY, (k1. 2k, o, {k(n— 1)+ 1,... kn).

Each piece collapses into a single vertex preserving the edges, i.e. if there are edges between vertices in one part, we obtain
multiply loops. The edges connecting different parts become multiply edges in the new graph.
Iterate this procedure, we obtain the web-graph.

Bibliography
Original papers:

e Y. Glebskii, D. Kogan, M. Liogonkii, V. Talanov, “Range and degree of realizability of formulas in the restricted
predicate calculus”, Cybernetics, 3, 142-154, 1969;

e R. Fagin, “Probabilities on finite models”, J. Symbolic Logic, 41, 50-58, 1976;
e S. Shelah, J. Spencer, “Zero-One laws for sparse random graphs”, J. Amer. Math. Soc., 1, 97-115, 1988;
Surveys:

e A Blass, Y. Gurevich, “Zero-One Laws: Thesauri and Parametric Conditions”, Bulletin of the European Association for
Theoretical Computer Science, 91, 125-144, 2007;

e A.M. Raygorodsky “Random graphs and its applications”, Trudy MFTI, 2 (4), 130-140, 2010;
Bibliography
Books:
e J. Spencer “Strange logic of finite graphs”, Springer, 178p, 2001;
e any book devoted to finite model theory (e.g. see L.Libkin “Elements of finite model theory”, Springer, 326p, 2012);
e R. Diestel “Graph theory”, Springer, 451p, 2012 (zero-one law for graphs).

Dimensional functions over partially ordered sets
Vladimir N. Remeslennikov

Motivation: Classical origins
Let F be a field. IrAlS = {Y C F", Y is algebraic set}.

Definition
dim(Y)=max{l e N: Y, CY,1C...CcY1CYy =Y,

where Y; irreducible algebraic set}.

Question
Is there a good definition of dimension for arbitrary algebraic structure?

Answer
Yes. There exist good definitions if algebraic structure is equationally noetherian.



Motivation: Origins from combinatorial algebra
Let A be an alphabet, A* be the free monoid and F'(A) be the free group. Most of problems from discrete optimization
and algorithmical group theory can be formulated in terms of A* and F(A).

Question
Let R C A* or R C F(A). Is there a good definition of dimension for such R?

Answer
Yes. If R is regular set.

Motivation: Origins from model theory

Question
How to define a measure for series K of finite algebraic structures such that GTh(K) has a good description?

Answer
Sometimes it is possible. And more the better such examples!

Partially ordered sets

Definition
A partial order is a binary relation < over a set M such that

e Va € M a < a (reflexivity);
e Va, b€ M a <band b < aimplies ¢ = b (antisymmetry);

e Va,b,c € M a <band b < cimplies a < ¢ (transitivity).

Definition
Set M with a partial order is called a partially ordered set (poset).

Linearly ordered abelian groups

Definition
A set A equipped with addition 4+ and a linear order < is called linearly ordered abelian group if

1. (A,+4) is an abelian group;
2. (A, <) is a linearly ordered set;

3. Va,b,ce Aa<bimpliesa+c<b+c.

Definition
The semigroup A™ of all nonnegative elements of A is

At ={a€ A|0<al.

Dimensional functions
Let M be a poset and A be a linearly oredered abelian group.

Definition
Function d : M — AT is called A-dimensional function over M if

1. Vz,y € M if © <y in M, then d(z) < d(y) in A.
2. Vx,y € M 3z’,y" such that if d(x) < d(y), then d(z) < d(z'), d(y') < d(y) and =’ < y/.

Definition
A-dimensional function over M is called strongly dimensional function if

1. Va,y € M 32/, ¢y such that if d(z) < d(y), then d(z) = d(z’), d(y) = d(y') and 2’ < ¢'.

Dimensional functions: axioms

Lemma
Let a function d : M — AT satisfies only the first axiom of dimensional function:

1. Vz,y e M if x <y in M, then d(x) < d(y) in A.

Then there exists a function d’ : M — AT, satisfying both axioms, that is dimensional function.



Flows
Dimensional function d : M — AT defines equivalence d over M in the following way

mi ~g Mo <> d(ml) = d(TILQ)

and is a homomorphism in the category of posets. Let us [m1] <4 [m2] <> d(m1) < d(m2).
Fact

M/ ~y is linearly ordered set.

Definition
M/ ~y is called d-flow. Order type of d-flow is denoted by 7q(M).

Definition
Element d(m) from A is called A-dimension of m.

Equivalence of dimensional functions

Let M be an poset and dy, dy are dimensional functions over M with values in some linearly ordered abelian groups.

Definition
Dimensional functions dy, dy are equivalent (d; ~ ds) if order types 74, (M) and 74, (M) are isomorphic.

Ordinal dimensional functions

Definition
Dimensional function d : M — A% is called ordinal if 74(M) is a well ordered set.

Definition
Poset M is called a set of ordinal type if there exist a strongly dimensional function for it.

Dimensional functions over Artin sets

Definition
Poset M is called Artin set if any chain a; > as > ... in M is finite.

Theorem
1. Every Artin set is a poset of ordinal type.

2. For every Artin set there exists unique up to equivalence strongly dimensional function.

Corollary
Let M be a finite poset. There exists a dimensional function over M and every two such functions are equivalent.

Non-equivalent dimensional functions
L, = {[0,1],2,3,[4,5]}, L» = {[6,7],8,[9,10]} with natural order. M = L; U Ls. Any a € Ly and b € Lo are not
comparable.

Proposition
There are two non-equivalent dimensional functions over M.
| = x € Ly,
dl(x){x—l, x € Lo.
x, z € Ly,
da(x) = !

r—10, x € Lo.

7a, (M) ={[0,1],2,3,[4,6],7,[8,9]}. ma, (M) ={[-4,-3],-2,[-1,1],2,3,[4,5]}.
Existence of dimensional functions
Theorem

For every poset M there exists a linearly ordered abelian group A and dimensional function d : M — A™T.

Corollary
For every poset M there exists a linearly ordered field F' and dimensional function d : M — F7T.

Question
Is it true that for every poset there exists strongly dimensional function?



Geometric dimensional functions

Theorem
Let dy : M7 — A be a dimensional function over poset M; and ds : My — A be a dimensional function over poset Ms. Then
the function d : M; x My — A defined as

Vmy € My Ymy € My d((m1,m2)) = dl(ml) + dg(mg)

is dimensional function over M; x M.

Lattice dimensional functions
Let M be a lattice and A be a linearly ordered abelian group.

Definition
Function d : M — AT is called lattice A-dimensional function if

1. d is A-dimensional function,

2. Vz,ye M d(zVy)+d(zAy) =dx)+d(y).

Theorem
Let M be locally finite semimodular lattice. Then there exists a linearly ordered abelian group A and lattice A-dimensional
function over M.

Corollary
Let M be distributive (Boolean) lattice. Then there exists a linearly ordered abelian group A and lattice A-dimensional
function over M.

Lattice dimensional functions over interval Boolean lattice

Question
Let S be countable set and P(S) be the Boolean lattice of subsets of S. When every two dimensional functions over P(.S)
are equivalent?

Application: Universal algebraic geometry
Let B be an algebraic structure in a functional language and Y C B™ is a non-empty subset. Denote by Irr(Y") the family
of all irreducible algebraic over B subsets of Y.

If B satisfies the Unification theorems (E.Daniyarova, A.Miasnikov, V.Remeslennikov), then Irr(Y") is poset and we can
define an ordinal dimensional function dim over Irr(Y).

Ordinal dimensional function dim let us to use induction to build universal algebraic geometry over B.

References
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Asymptotic classification of subsets of F'(X)

Vladimir N. Remeslennikov

Graphs
Consider a Cayley graph C(F, X) for a free group F' generated by finite set X, let |X| = m.

Pic. 1. Cayley graph for F' = F(a,b).

Generation of random words in F(X)

Let F' = F(X) be a free group with a basis X = {x1,..., 2z, }. We use the following no-return random walk on the Cayley
graph of F' with respect to the generating set X. We start at the identity element 1 and either do nothing with probability
s € (0,1], or move to one of 2m adjacent vertices with equal probabilities (1 — s)/2m. If we are in a vertex v # 1, we either

stop at v with probability s (and return the value v as the output), or move with the probability 2171_—31 to one of the 2m — 1
+1

i

adjacent vertices lying away from 1, thus producing a new freely reduced word vx



It is easy to see that the probability us(w) for our process to terminate at a word w is given by the formula

s(1 — s)ll
He() = G B — T

and
ps(1) =s.

Hence the length of words produced by our process are distributed according a geometric law.

Probability measures of R C F(X)
Let R C F(X). Denote by ni(R) = |RN S| and by fi(R) the relative frequencies

N

fk:@7

where Sy, = {w||w| = k} is a sphere of the radius k. Put

ps(R) = Z fs(w)

weER

or equivalently

ps(R) =5 fr(l—s)*
k=0

s is an atomic probabilistic measure. Hence, there exists a family of measures {us|s € (0, 1]} defined over the subsets of
F(X).

A-measure for R
Put s = 0 and obtain a non-stopping random walk on the Cayley graph C(F, X). In this case the probability A(w) that
the walker reaches an element w € F in |w| steps is equal to

1
2m(2m — 1)lwl=1’

Aw) = if w#1,and A(1) = 1.

This gives rise to an atomic measure

AR) =D AMw) =Y ful(R).
k=0

weER

This measure is not probabilistic (as A(F) = co). We shall call A the frequency measure on F. If R is A-measurable (i.e.
A(R) < o0) then fr(R) — 0 when h — oo, so intuitively, the set R is “small” in F.

Proposition
For any A-measurable subset R C F' there exists a finite subset K C F' with A(R) = A(K).

The A-measure is multiplicative:
AMuowv) = Au)A(v) Yu,v € F(X).

Generating function of a subset R C F(X)
Let R be a subset of F' = F'(X) and Sy, is a sphere of radius k in the Cayley graph of F(X).

|RN Sk

Denote by fr = 5]
k

so called relative frequencies of R in F'.

The generating function for R is a formal series in RJ[[t]]:
9gr(t) = Z fit®

Examples
gr(t) = 5, gur(t) = mﬁ7 where wF = {wov|v € F} is a cone.



Cesaro density
For a subset R of F' we define the limit measure po(R) (the Cesaro density):

. T RY.
mm-mMW—gg§m1@.

s—0t

The function g is additive. It is easy to construct a set R such that po(R) does not exist.

From the theorem by Hardy and Littlewood it follows that po can be computed as the Cesaro limit

po(R) = T —(fi+ ..+ fu).

Examples

e« F=F =17,R=27;

e H is a subgroup of finite index in F(X), po(H) = ‘F:lm.

Asymptotic classification of subsets
Now we introduce a classification of subsets in F":
o thick subsets: uo(R) exists and ug(R) > 0;
o sparse subsets: puo(R) = 0 and A(R) exists;
o subsets of intermediate density: p1o(R) = 0 but A(R) does not exist;

o singular subsets: po(R) does not exist.

Rational and algebraic subsets
Let R be a subset of F'. By the definition, its generating function gr(t) is analytic on (0, 1). The subset R is called rational
(algebraic) if so is gr(t). We say R is smooth if gr(t) can be analytically extended to a neighbourhood of 1.

Poles

It is well-known fact that singular points of an algebraic function are either poles or branching points. A function gg(t)
has no any singularity at 1 or it has a pole if gr(t) is rational.

Again, by the Hardy—Littlewood theorem pio(R) = res; gr(t). We have the formulas:

1

)= ——, puo(F) =1
gF() 1_t7,u0( ) )
1 1
wF(t) = ’
gor(t) = 5 B T T =
1
po(wF)

T 2m(2m — 1)wl-1
where wF = {wowv|v € F} is a cone.

Why?
Why the function ﬁ is not generating for some regular subset R C F'(X)?
A generation function for regular set has

e either no singularity at 1 (sparse set),
e or a pole of order 1 (thick set).

But ﬁ has no.

Dimensional functions for regular subsets

Let R be a regular subset from F(X) and A = @ X Q the abelian group with left lexicographical order. For any element
of the class Syeq = {R|R is regular} we define a map

dim: Syeq — AT

by
dim R = (po(R), A(R')),

where the sparse set R’ is effectively constructed from R.



Result

Theorem

The map dim: S,., — A% is a dimensional function.
Algorithm for computing of dim(R)

1. Compute gr(t) %

2. If f(1) # 0, then po(R) =0 and AM(R) = gr(1) = dim(R) = (0, A\(R)).
3. If f(1) =0, then f(t) = (1 —1t)fo(t) and fo(1) # 0.
4. Compute resi(gr(t)) =c, 0 <c <1

5. Find r(t) = gr(t) — 1% . Function +7(t) is generating function for regular set R’, which are from decomposition of

automaton A(R). And the set R’ is sparse. Compute A(R') < oco.
6. dim(R) = (¢, £e\(R")).
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Asymptotic classification of regular sets

Part I. Regular sets

1 Regular sets

Finite automata
Let X = {x1,...,z,} be a finite alphabet, X* be the free monoid generated by X and F(X) be the free group generated
by X.

A finite automaton A is a finite labelled oriented graph (possibly with multiple edges and loops). We refer to its vertices
as states; some states called initial, some states called final.

Assume that every edge of the graph is labelled by one of symbols 2+, 2 € X. A path in A is a set of edges eq, ..., en,
such that for each ¢ = 1,...,[ the end point e;_; is equal to the starting point of e;. Reading labels on edges along the path
consequently we get the label of the path.

Finite automata

O = initial state

@ = final state

Pic. 1. Finite automaton A.



Facts about regular sets
The language accepted by A is a set L = L(A) of labels of paths from an initial state to an final state.

An automaton is said to be deterministic if for any state there is at most one arrow with the given label exiting from
the state.

A regular set over X* is a language accepted by a finite deterministic automaton.

Finite automata
Example 1. The automaton A accept the language Ly = L1(A) = {a*b} [J{a*c™1}. Therefore, the language L, over the
alphabet (a,b) is regular.

Example 2. The language Lo = {a™b"|n is a positive integer} over the alphabet (a,b) is nonregular.

Facts about regular sets
If A and B are regular subsets of F', then

e 1) sets AN B, AU B, A\ B are regular,
e 2) A* is regular;
e 3) A is regular, where A is the prefix closure of A, i.e. the set of all initial segments of all words in A4;

e 4) Ao B is regular, where a o b means that there is no cancellation between a € A and b € B.

Adjacency matrix
One can associate with the automaton A it’s adjacency matrix A by taking n X n matrix and writing the number of
arrows from state ¢ to j in the position (i, 7), where n is the number of states of A.

Fact 1. The number of different paths of length k from i to j is equal to (Ak)i’j.

Fundamental matrix
Set T'=tA and let B =T +T? + ... be the matrix with entries b;; from the ring of formal power series R[[t]].

Then B(E—T) =T and B =T(E —T)" 1.
The matrix B is called fundamental matrix of A.
Fact 2. Entries b;; of B are rational functions of t.

Generating function of a regular set
Let R be a subset of F' = F(X) and Sy is a sphere of radius k in the Cayley graph of F(X).

|RﬂSk|

Denote by fr = 5]
k

so called relative frequencies of R in F'.

The generating function for R is a formal series in R][t]]:
9gr(t) = Z fit®

Generating function of a regular set
Theorem 1. The generating function of a reqular set is a rational function of t.

Proof. Indeed,
gr(t) = Y by,
ieljeJ

where I is the set of all initial states, and J is the set of all final states of A.
Then the result follows from Fact 2. e



A—measure
We introduce atomic measure on subsets R of F' = F'(X), rank(F') =m < oo:

AR) =" fr(R).
k=0

1
In particular, if R= ‘{'LU} and ‘UI| = k’, k # O, then )\(R) = m,
It is easy to check that A(R) = > AMw) = > fi(R), i.e. A(R) is an atomic measure indeed. We will call it frequency
weER k=0

measure on F'.

A—measurable sets
We say R is A—measurable, if A(R) is finite.

A set R is termed exponentially \—measurable, if fi,(R) < ¢* for all sufficiently large k and positive constant ¢ < 1.

Fact 3.

e (i) If R C F(X) is A—measurable, then R is negligible. The reverse is not always true.

e (ii) The measure X is additive, but not o-additive.

Cones

A cone C(w) with the handle w is a set of all elements in F' containing the given word w as initial segment. Obviously,
cones are regular sets.

X oyl

Pic. 2. Finite automaton for cones.
Asymptotic classification of regular sets

Theorem 2. [Borovik, Miasnikov, Remeslennikov, 2003] Let R be a regular subset of F' = F(X). Then there are only
two possibilities:

i) The prefix closure R of R contains a cone, or
ii) R is A—measurable.

Asymptotic classification of regular sets

Theorem 2’. [Borovik, Frenkel, Miasnikov, Remeslennikov, 2003, 2005] Let R be a regular subset of F' = F(X). Then
there are only two possibilities:

i) The prefix closure R of R contains a cone, or

ii) R is exponentially A—measurable.

Asymptotic classification of regular sets

Part II. Calculating of A—measure



2 Calculating of A—measure

Discrete-time Finite Markov chains
Let

1) S =(s0,51,--.,5,) be a finite number of states;
2) P be a stochastic transition matrix;

3) m=1(qo,q1---,qn) be a stochastic initial vector.

Example of a Markov process
Example 3. Let S = (sg,...,84).

Assume that if the process reaches state sg or s4 it remains there from that time on and let the transition matrix is given
by

s s1 sz 083 S
«(1 0 0 0 0)
slg 0 p 0 0

= 210 g 0 p 0
10 0 g 0 p
“«0 0 0 0 1)

Track of the process
Let us assume that the process starts in state so.

Then 7 = (0,0,1,0,0) and

,/ :_,"r—"%

x;<£ " “
ALY
A 5

2 % 5, %
% %o .
i
.ﬁ{ ¢ 5 %
gy m——t—s, 1
Pic.2. Track of the process.
Interpretation of P*
Fact 4.
i) Powers P¥, k =1,2,... of a transition matrix P are stochastic matrices;

ii) entries pf,j of P* represent a probability of a transition from s; to s; in k steps.

Binary relation on states
Let < be a binary relation on S. Namely, set s; < s; iff the process can go from s; to s; (not necessarily in one step).

The states are divided into equivalence classes and let ~ be the corresponding equivalence relation on S, defined by <.
Let [s] be a equivalence class with a representative s;
S = S/~ be a quotient set of ~ and

“<” be a partial ordering on S, induced by <.



Classification of states B
States from the minimal equivalence classes for the system < .S, <> are called ergodic states.

The remaining states called transient.

It is clear that if the process enters the equivalence class of some ergodic state, it can never leave this class, while if it
leave a transient state, it will never return to its equivalence class again.

If the equivalence class of some ergodic state contains only one element, this state is called absorbing.

A canonical form for the transition matrix
Let us renumber states of a Markov chain such that ergodic states (T—states) come first, and then come transient states.

In this case P looks like

and

Example
For instance, for Example 3 we obtain

51

3

(=T~ T — I I — Y — R4

=]
]
T — T T R

\ 0

Probability theorem
Theorem 3. In any finite Markov chain, no matter where the process starts, the probability after & steps that the process
is in an ergodic state tends to 1 as k tends to infinity.

Corollary 1. There are numbers b > 0,0 < ¢ < 1 such that
pf_j < bc®

for any transient states s; and s;.

Fundamental matrix
A chain, all of whose ergodic states are absorbing, is called an absorbing chain.

Fact 5. For any absorbing Markov chain klim Q" = 0 and hence £ —Q has an inverse and (F—Q)™' = E+Q+Q%*+.. ..
— 00

For an absorbing Markov chain we define the fundamental matrix to be
N=E-Q '=E+Q+Q*+....

Applications of fundamental matrix
Theorem 4. If b;; is the probability of the process to leave a transient state s; and stop at an absorbing state s;, then

B = {bi;} = NR,

where R is the block in P and N is the fundamental matrix of a process.



Special automata
A deterministic automaton A we will call special, if

1.) it has only one initial state vy and one final state vy, vo # vy;
2.) there are no arrows entering the initial state vy and there are no arrows exiting from the final state vy;

3.) for any state v of A, all arrows which enter v have the same label z € X U X! and arrows exiting from v cannot have
label 271,

4.) there is at least one state v # vy, vy such that there is an edge labelled a entering this state but some label from
X U X1\ {a} is not present on arrow exiting from v.

Calculation of A—measure for special automata
Theorem 5. Let A be a special automaton and L = L(A). Then

AML(A)) < 1.
Sketch of the proof of Theorem 5.
We form an absorbing Markov chain for A:
S contains all states of A together with additional state D;
initial distribution
=0 ... 1 ... 0)
Vo
transition matrix entries

number of arrows from s; to s;
21X -1

Dij =

and ppp = 1.

Lemma
Lemma 1. Let A be a special automaton and L = L(.A). Then A\(L(.A)) is a probability of the process to stop in vy.

Since the probability to stop at D is equal to zero, then A(L(A)) < 1.

The End. Thank you!



