Мальцевские чтения Новосибирск (2004) тезисы докладов

On derivations of the ternary Malcev algebra M_8

 $A.P.Pojidaev^1$, P. Saraiva

Ternary Malcev algebras are a particular case of n-ary Malcev algebras, first defined in [3], and these naturally arise from the classification of n-ary vector cross product algebras [1]. Indeed, the classification theorem for the latter asserts that, in the case n=2, the only possible algebras are the simple 3-dimensional Lie algebra sl(2) and the simple 7-dimensional Malcev algebra C_7 ; in the case $n \geq 3$, those are the simple (n+1)-dimensional n-Lie algebras (which, in turn, are a natural generalization of Lie algebras to the case of an n-ary multiplication [2], and nowadays called Filippov algebras) with vector cross product, being analogues of sl(2), and also some exclusive ternary algebras arising on composition algebras.

It has been proved [3] that the latter are ternary central simple Malcev algebras, which are not 3-Lie algebras if the characteristic of the ground field is different from 2 and 3 (more generally, the result states that every *n*-ary vector cross product algebra is an *n*-ary central simple Malcev algebra).

The class of n-ary Malcev algebras has also the following interesting properties:

- 1. It is an extension of the class of n-Lie algebras, i.e., every n-Lie algebra is an n-ary Malcev algebra (generalizing the fact that every Lie algebra is a Malcev algebra);
- 2. Fixing a component in the multiplication (i.e, defining a new reduced operation on the vector space A of the n-ary Malcev algebra by the rule $[x_1, \ldots, x_{n-1}]_a = [a, x_1, \ldots, x_{n-1}]$, we obtain an (n-1)-ary Malcev algebra.

By an n-ary Jacobian, we mean the following function defined on an

 $^{^1\}mathrm{supported}$ by Russian Science Support Foundation and by State Aid of Fundamental Science Schools, grant NSh-2069.2003.1

n-ary algebra:

$$J(x_1, \ldots, x_n; y_2, \ldots, y_n) =$$

$$[[x_1, \ldots, x_n], y_2, \ldots, y_n] - \sum_{i=1}^n [x_1, \ldots, [x_i, y_2, \ldots, y_n], \ldots, x_n].$$

An *n*-ary Malcev algebra $(n \geq 3)$ is an Ω -algebra L with one anticommutative *n*-ary operation $[x_1, \ldots, x_n]$ satisfying the identity

$$-J(zR_x, x_2, \ldots, x_n; y_2, \ldots, y_n) = J(z, x_2, \ldots, x_n; y_2, \ldots, y_n)R_x$$

where $R_x = R_{x_2,...,x_n}$ is the operator of right multiplication.

Henceforth, we assume that Φ is a field of characteristic not equal to 2, 3 and denote by A a composition algebra over Φ with an involution $\bar{}$: $a \mapsto \bar{a}$ and nonsingular symmetric bilinear form $\langle x, y \rangle = \frac{1}{2}(x\bar{y} + y\bar{x})$. If A is equipped with a ternary multiplication $[\cdot, \cdot, \cdot]$ by the rule

$$[x, y, z] = x\bar{y}z - \langle y, z \rangle x + \langle x, z \rangle y - \langle x, y \rangle z,$$

then A becomes a ternary Malcev algebra which will be denoted by M(A). If $\dim A = 8$ then M(A) is not a 3-Lie algebra and we denote it by M_8 .

Let \mathcal{R} be the vector space generated by the right multiplications of M_8 . Let $Ass(\mathcal{R})$ and $Lie(\mathcal{R})$ denote, respectively, the associative and the Lie algebra generated by \mathcal{R} . Let $Der(M_8)$ be the derivation algebra of M_8 . Recall that a derivation is called *inner* if it belongs to the Lie algebra $Lie(\mathcal{R})$ of transformations.

Theorem 1. 1. $Ass(\mathcal{R}) = M_{8,8}(\Phi) = \langle \mathcal{R}^2 \rangle$;

- 2. $Lie(\mathcal{R}) \cong D_4$ and $Lie(\mathcal{R}) = \mathcal{R}$ as vector spaces;
- 3. $Der(M_8) \cong B_3$.

Theorem 2. All derivations of M_8 are inner.

In the case of Malcev algebras we know that the operators of the type $[R_x, R_y] + R_{xy}$ are inner derivations.

Theorem 3. Let M(A) be a ternary Malcev algebra. For any $x, y, z \in A$

$$[R_{z,x}, R_{z,y}] + R_{z,[x,z,y]} \in Der(M(A)).$$

Let A be an n-ary anticommutative algebra with multiplication $[\cdot, ..., \cdot]$. Every operator $D: A \longrightarrow A$ such that

$$[D, R_a] \in Lie(\mathcal{R})$$
, for all $R_a \in Lie(\mathcal{R})$,

is said to be a quasi-derivation of A. The set of all quasi-derivations of the algebra A we denote by QDer(A).

Theorem 4. $QDer(M_8) = \langle Id \rangle_{\Phi} \oplus Lie(\mathcal{R}).$

In the proofs of all these results we use some symmetries of the canonical basis of a composition algebra.

References

- [1] Brown R.B., Gray A. (1967). Vector cross products. Comment. Math. Helv.~42:~222-236.
- [2] Filippov V.T. (1985). n-Lie algebras. Sib. Math. J. 26(6): 879-891.
- [3] Pozhidaev A.P. (2001). n-Ary Mal'tsev algebras. Algebra and Logic 40(3):170-182.

IM SB RAS (Russia, Novosibirsk), Universidade de Coimbra (Portugal) e-mail: app@math.nsc.ru