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Constructive Semantics
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Negation problem
BHK negation ¬F   is F → ⊥, where ⊥ is a statement that does not 
have a proof. By BHK clause 1, a proof of  ¬F is  a construction 
which brings to the contradiction any proof assertion concerning F.  

Suppose F does not have a proof, then any p is a `proof’ of  ¬F : 
the assumption “c is a proof of F” is provably false, hence yields 
that p(c) is a proof of the contradiction. 

This feature of BHK is rather disturbing: 
no relevance between a proof and a sentence it proves: 
no constructivity of intuitionistic truths: sentences ¬F as above are 
de facto assumed to be true without having a meaningful witness. 

3



Universal quantification problem

Similar reasoning provides a “constructive proof” for each true Pi-1 sentence 
∀x F(x): the required algorithm takes n and searches for a proof of F(n).
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Kreisel Second Clause correction

In 1962,  Kreisel offered corrections to the problematic 
implication and universal quantifier clauses: 

   1ˊ a proof p of A→B is a construction which given a proof u 
of A returns a proof p(u) of B, plus a verification that p indeed 
satisfies these conditions. 

   4ˊ. a proof p of ∀xA(x) is a function converting any c into a 
proof of A(c), plus a verification that p indeed satisfies these 
conditions. 
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We suggest calling BHK augmented by Kresel’s second clause 
BHK*

and consider BHK* the ultimate (informal) formulation of BHK.
This approach has been shared by Myhill, van Dalen, Troelstra, 
Goodman,  Dummett, Feferman, Beeson, Sundholm, and others. 

Prior to the Logic of Proofs solution which we present in this 
talk, despite considerable efforts, there were no formalization of 
the Brouwer-Heyting-Kolmogorov semantics BHK* given. 

To make this point, we will consider four main efforts:
Kreisel-Goodman theory of constructions;
Realizability;
Curry-Howard isomorphism;
Intuitionistic Type Theory.

Kreisel Second Clause correction
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There were many features introduced there that were eventually 
used in the Logic of Proofs solution. However, the original 
variant of C was inconsistent. Goodman in 1970 fixed that gap 
but his solution involved a stratification of constructions into 
levels which ruined the BHK character of this semantics. 

A comprehensive account of the Kreisel-Goodman theory could 
be found in S. Weinstein’s paper of 1983, which concludes that
“The interpretation of intuitionistic theories in terms of the 
notions of proof and construction . . . has yet, however, failed to
receive a definitive formulation.”

Walter Dean and Hidenori Kurokawa are now making a serious 
effort to investigate how close C was to a BHK* formalization. 

Kreisel’s  Theory of Constructions C
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Kleene realizability disclosed a computational content of formal 
intuitionistic derivations which is however quite different from 
the provability semantics. Kleene realizers are not proofs in a 
formal theory, the predicate “r realizes F ” is not decidable. 
Realizability models not the original BHK, but BHK adjusted by 
adding a selector to the disjunction clause (BHKs). Finally, 
Realizability does not satisfy BHK* (Kreisel Second Clause):
• a realizer for an implication is a computable function that takes a 
realizer for the hypothesis and produces a realizer for the 
conclusion.
• a realizer for a universal statement is a computable function that 
produces, for each m, a witness for the formula instantiated with m.

In particular,  n realizes ¬F   iff   for no m, m realizes F. 
No relevance between a witness n and the sentence ¬F .

Realizability
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Curry-Howard isomorphism transliterates natural derivations in 
intuitionistic logic to typed λ-terms hence providing a typed 
functional reading of logical derivations. 

As proof objects Curry-Howard λ-terms do not have a semantic 
value since they denote the very intuitionistic derivations which 
semantics is supposed to justify and thus yield an immediately 
circular provability semantic. Above all, CH does not have a 
verification mechanism and hence does not support BHK*. 

J.-Y. Girard: “In both of these cases [CH and Realizability], the 
foundational pretensions have been removed. This allows us to make 
a good use of an idea which may have spectacular applications in 
the future.” (Proofs and Types, 1989).

Curry-Howard Isomorphism
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Martin-Löf’s ITT is a rich calculus of types and computational 
terms: it uses the proof/witness rhetoric to illustrate the rules, but 
is ultimate formal semantics of ITT is computational: typed 
computational programs. 
ITT does not seem to support BHK*, but can serve as a semi-
formal foundation of intuitionistic reasoning, a kind of refined 
BHK, with some formal system on the background, which, 
however, is supposed to be read with some informal 
“intuitionistic” semantics in mind to properly fill in the gaps in 
the formal exposition. This can be sufficient for a devoted 
intuitionist who does not seek a compete formalization of 
foundations, but the for the purposed of BHK formalization, 

ITT does not formalize BHK* 

Intuitionistic Type Theory
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Computational BHK is not BHK*
Computational BHK (Realizability, CH, ITT) does not address the 
negation problem: in realizability, 

n realizes ¬F            iff          for no m, m realizes F. 
The predicate “for no m, m realizes F” is not constructive, its 
realizer n does not appear to qualify as its constructive ‘witness’ 
since it does not carry any information about the validity of “for no 
m, m realizes F.”All independent formulas are constructively false 
since their negations are ‘baptized’ as realizable by any witness n.
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BHKs = BHK + selector
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What does computational BHK 
formalize?

Computational BHK (Realizability, CH, ITT) does not actually 
formalize the original BHK, it rather formalizes BHKs which is a 
version of BHK in which the disjunction clause 3 is replaced by a 
stronger requirement 3ˊwith selector. If we compare the 
requirements to witnesses, then 

BHK ⊃ BHKs ⊃ BHK*. 
Inclusion BHKs ⊃ BHK* holds assuming another Kreisel’s suggestion to 
keep the relation witness/formula decidable. 

BHK underspecifies constructive provability semantics; 
BHKs - computability semantics: Realizability, CH, ITT;
BHK* - the intended semantics of constructive proofs, is not 
formalized by computability-based systems such as Realizability, 
CH, ITT. 
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Intuitionistic vs. Classical Perspective
Intuitionists normally base their formal systems on intuition of 
constructive, e.g., BHK-style informal semantics, rather then on 
classical foundations. This approach will not be discussed here. 

Classical mathematicians (such as Gödel, Kolmogorov, 
Kleene, Novikov, and others) seek a rigorous

classical definition of the constructive semantics. 

In particular, BHK “proofs” and “constructions” should be 
defined using mathematical objects, e.g., classical proofs and 
programs, so that intuitionistic postulates become theorems of 
classical mathematics. This approach will be the object of our 
study.  
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Provability calculus, 1933 
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Provability embedding 
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Provable reflexivity issue
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Impredicativity issue

18



First steps 
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New operation +
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The basic Logic of Proofs
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Arithmetical semantics
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Invariant principles
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Soundness and completeness in PA
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Kripke-style semantics
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Constant specifications
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Internalization
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Realization
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Realization: example
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Realization via cut-elimination
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Self-referentiality of proofs is needed.
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Kuznets’ Theorem
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Yu’s Theorem
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First order LP
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Proof assertions in FOLP
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Language of FOLP - proof terms
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Language of FOLP - formulas
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FOLP - axioms and rules
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FOLP - axioms and rules
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Derivation example
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Internalization
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Realization of FOS4 and HPC
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Generic provability semantics
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To what extent FOLP is BHK*?
We show that the Gödel embedding + Logic of Proofs 
realization provides an exact semantics of first-order logic 
language which satisfies the BHK* requirements to 
constructive proofs. 

It is very instructive to watch how exactly Gödel/LP 
formalization straightens known omissions of the original 
BHK and delivers a provability sound realization of BHK* 
including all Kreisel’s additions. 
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Conjunction
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Disjunction
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Universal quantifier
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Corrected formulation  
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Existential quantifier
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Negation

50



Implication, revisited
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Three facets of BHK semantics
Computational BHK (Realizability, CH, ITT) does not actually 
formalize the original BHK, it rather formalizes BHKs which is a 
version of BHK in which the disjunction clause 3 is replaced by a 
stronger requirement 3́ with selector. If we compare the 
requirements to witnesses, then 

BHK ⊃ BHKs ⊃ BHK*. 
Inclusion BHKs ⊃ BHK* holds assuming another Kreisel’s suggestion to 
keep the relation witness/formula decidable. 

BHK underspecifies constructive provability semantics; 
BHKs - computability semantics: Realizability, CH, ITT;
BHK* - the intended semantics of constructive proofs, is not 
formalized by Realizability, CH, ITT. 
Formalizing ‘constructive proofs’ requires both programs and 
verifications, programs only are not enough! 

52


