Characterization of alternating and symmetric groups by spectrum

I.B. Gorshkov

Sobolev Institute of Mathematics

Novosibirsk, 2013

I.B. Gorshkov

- G is a finite group
- $\pi(G)$ is the set of prime divisors of |G|
- $\omega(G)$ is the spectrum of G, that is the set of its element orders
- G and H are isospectral if $\omega(G) = \omega(H)$

h(G) is the number of pairwise non-isomorphic finite groups with the spectrum equal to $\omega(G)$.

- G is called recognizable if h(G) = 1,
- almost recognizable if $h(G) < \infty$,
- nonrecognizable if $h(G) = \infty$

Shi, 1984

The group A_5 is recognizable.

I.B. Gorshkov

Brandl, Shi, 1991

The group A_6 is nonrecognizable.

I.B. Gorshkov

Mazurov, Zavarnitsine, 1999

Suppose that the factor group H = G/N of a finite group G is isomorphic to a symmetric or alternating group of degree m, where $m \ge 6, m \ne 8$ and $N \ne 1$. Then $\omega(G) \ne \omega(H)$.

Kondrat'ev, Mazurov, 2000; Zavarnitsine, 2000

The group A_n is recognizable if n = p, p + 1, p + 2, where $p \ge 7$ is a prime.

Mazurov, 1998

The group A_{10} is nonrecognizable.

Zavarnitsine, 2000

The group A_{16} is recognizable.

Shao, Jiang, 2010

The group A_{22} is recognizable.

The group A_n is recognizable if $5 \le n \le 25$ and $n \ne 6, 10$.

pr(n) the largest prime not exceeding n.

Vakula, 2010

Let *n* be an integer greater than 21 and *G* be a group isospectral to the group A_n . Then, every chief series of the group *G* possesses a factor isomorphic to the group A_k for some k from the interval [pr(n), n]. Moreover, no other factor of this series contains the element pr(n) in its spectrum.

Gorshkov, 2012

Suppose G is a finite group with $\omega(G) = \omega(A_n)$, where $n \ge 5$, $n \ne 6, 10$. Then G is isomorphic to A_n .

Brandl, Praeger, Shi, Mazurov, Darafsheh, Modhaddamfar, Zavarintsine, 1991 – 2001

The group S_n is recognizable if n = 9, 12, 14, or n is a prime greater than 5. The group S_n is nonrecognizable if n = 5, 6, 8.

Gorshkov, 2013

Suppose G is a finite group with $\omega(G) = \omega(S_n)$, where $n \ge 5$, $n \ne 5, 6, 8, 10, 15, 16, 18, 21, 25, 27, 33, 35, 39, 45$. Then G is isomorphic to S_n .

Thank you for your attention!

I.B. Gorshkov