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Constructive properties of Int

If `Int ϕ ∨ ψ, then `Int ϕ or `Int ψ.
(Disjunctive property)

If `Int ∃xϕ(x), there is a term t such that `Int ϕ(t)
(Extracting terms from proofs)

Dual constructive properties, which fail for Int :

If `∼ (ϕ ∧ ψ), then `∼ ϕ or `∼ ψ.
(Constructive negation property)

If `∼ ∀xϕ(x), there is a term t such that `∼ ϕ(t).
(Effective counterexample property)
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Kleene realizability

In [Nelson49], constructive arithmetic satisfying
four constructive principles is defined via modification of

Kleene realizability semantics

Consider the language of arithmetic 〈s1,+2, ·2,0〉 and relation

e r ϕ,

where e ∈ N and ϕ is an arithmetic formula.

〈 , 〉 : N × N → N is a primitive recursive 1-1 function.
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Kleene realizability

e r ⊥ is false for all e

e r t = s iff e = 0 and s = t is true

e r ϕ ∨ ψ iff e = 〈n,m〉 and n = 0, m r ϕ, or n > 0, m r ψ

e r ϕ ∧ ψ iff e = 〈n,m〉, n r ϕ and m r ψ

e r ϕ→ ψ iff for any n, if n r ϕ, then partial recursive function fe
is defined at n and fe(n)r ψ

e r ∀xϕ(x) iff for every n, fe(n)r ϕ(n), where n = sn(o)

e r ∃xϕ(x) iff e = 〈n,m〉 and m r ϕ(n).
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Kleene realizability

A formula ϕ is realizable if there is e such that e r ϕ.

Theorem
(D. Nelson, 1947) If ϕ is derivable in HA from realizable formulas, then
ϕ is realizable.

Markov principle.

∀x(ϕ(x) ∨ ¬ϕ(x)) ∧ ¬∀x¬ϕ(x)→ ∃xϕ(x)

Markov principle is realizable, but non provable in HA.
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Nelson’s arithmetic

Nelson introduced in the language additional negation symbol ∼
and defined two relations between natural numbers and
arithmetical formulas

"e rp ϕ" and "e rn ϕ"

p-Realizability is identical with Kleene realizability for old
connectives and

e rp ∼ ϕ iff e rn ϕ
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Nelson’s arithmetic

n-Realizability is defined as follows:

e rn ⊥ iff e = 0

e rn t = s iff e = 0 and s = t is false

e rn ϕ ∨ ψ iff e = 〈k ,m〉, k rn ϕ and m rn ψ

e rn ϕ ∧ ψ iff e = 〈k ,m〉 and k = 0, m rn ϕ, or k > 0, m n rn ψ

e rn ϕ→ ψ iff e = 〈k ,m〉, k rp ϕ and m rn ψ

e rn ∀xϕ(x) iff e = 〈k ,m〉 and m rn ϕ(k).

e rn ∃xϕ(x) iff for every k , fe(k)rn ϕ(k)

e rn ∼ ϕ iff e rp ϕ
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Nelson’s arithmetic

The arithmetic NA suggested by D. Nelson satisfies the theorem

Theorem
(D. Nelson, 1947) If ϕ is derivable in NA from p-realizable formulas,
then ϕ is p-realizable.

NA is a conservative extension of Heyting arithmetic HA
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Nelson’s arithmetic

NA has Disjunctive property and Extracting terms from proofs property
and contains among others the following the axiom schemes

A1. ∼∼ ϕ↔ ϕ

A2. ∼ (ϕ ∨ ψ)↔ (∼ ϕ ∧ ∼ ψ)

A3. ∼ (ϕ ∧ ψ)↔ (∼ ϕ ∨ ∼ ψ)

A4. ∼ (ϕ→ ψ)↔ (ϕ ∧ ∼ ψ)

A5. ∼ ∀xϕ(x)↔ ∃x ∼ ϕ(x)

A6. ∼ ∃xϕ(x)↔ ∀x ∼ ϕ(x)
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Nelson’s arithmetic

Now we have
NA `∼ (ϕ ∧ ψ) ⇒(A3) NA `∼ ϕ∨ ∼ ψ ⇒
⇒(Disjunctive property) NA `∼ ϕ or NA `∼ ψ

and
NA `∼ ∀xϕ(x) ⇒(A5) NA ` ∃x ∼ ϕ(x) ⇒
⇒(Extracting terms) NA `∼ ϕ(t) for some term t
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Historical remarks

Propositional variant of Nelson logic was studied by N. Vorobiev
(1952).
A logic weaker then Nelson logic developed by Fitch (1952) it
lacks ∼ (ϕ→ ψ)↔ (ϕ ∧ ∼ ψ).
Algebraic semantics for propositional Nelson Logic was suggested
by H.Rasiowa (1958).
Kripke semantics for first order Nelson Logic was suggested by
R.Thomason (1969).
Independently, Gentzen-style calculus equivalent to Nelson’s
system was developed by F. von Kutschera (1969).
The system closely related to strong negation systems arose also
in the work by J.P. Cleave (1974), who constructed the predicate
calculus adequate for the algebra of inexact sets of S. Körner
(1966).
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Historical remarks

From the early 1970s several authors explored logical systems
similar to Nelson’s and Fitch’s but lacking the “explosive" axiom
∼ ϕ→ (ϕ→ ψ), thus producing paraconsistent logics. The
paraconsistent version of Nelson logic was studied independently
by R. Routley (later R. Sylvan)(1974) in the propositional case, by
Lopez-Escobar (1972) and by Nelson himself (1984), both in the
first-order case.
Nelson’s logic was considered as logic suitable for description of
information structures in monographs by H.Wansing (1993) and
J.O.M.Jaspars (1994).
H.Wansing applied strong negation to solve several well known
paradoxes of philosophical logic.
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Definition of basic logics

Logic is a set of formulas closed under the rules of modus ponens and
substitution.

We consider two variants of Nelson’s paraconsistent logic. The logic
N4 is determined in the language 〈∨,∧,→,∼〉 with ∼ for strong
negation by axioms:

1 Axiom of positive intuitionistic logic
2 Strong negation axioms (Vorobiev axioms):

A1. ∼∼ p ↔ p
A2. ∼ (p ∨ q)↔ (∼ p ∧ ∼ q)
A3. ∼ (p ∧ q)↔ (∼ p ∨ ∼ q)
A4. ∼ (p → q)↔ (p ∧ ∼ q)
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Definition of basic logics

N4⊥ is determined in the language 〈∨,∧,→,∼,⊥〉 with additional
symbol ⊥ for absurdity by axioms of N4 and

A5. ⊥ → p and A6. p →∼ ⊥,
in which case ¬ϕ := ϕ→ ⊥ is an intuitionistic implication.

Theorem
The logic N4⊥ is a conservative extension of N4 and of intuitionistic
logic.

N3 := N4 + {∼ p → (p → q)}

Put ⊥ :=∼ (p → p). Then

N3 ` ⊥ → p, p →∼ ⊥.
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Algebraic semantics for N4⊥

[H. Rasiowa, 1958] The algebraic semantics for N3 (with two
negations ∼ and ¬) in terms of N-lattices (quasi-pseudo-Boolean
algebras).
[D. Vakarelov, 1977] and independently [M.M. Fidel, 1978]
Presentation of N-lattices via twist-structures (the term is due to
[M. Kracht, 1998]).
[Odintsov, 2013] Algebraic semantics for N4
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Replacement of equivalents in Nelson’s logics

N3, N4 and N4⊥ are not closed under the replacement rule, but
they are closed under the weak replacement rule:

ϕ↔ ψ, ∼ ϕ↔∼ ψ
ξ(ϕ)↔ ξ(ψ)

∼ (p → q)↔ (p ∧ ∼ q) ∈ N4, but (p → q)↔ (∼ p ∨ q) ∈ N4

However, N3, N4 and N4⊥ a are closed under the positive
replacement rule:

ϕ↔ ψ

ξ(ϕ)↔ ξ(ψ)
,

where ξ is ∼-free
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Twist-structures

Let A = 〈A,∨,∧,→,1〉(〈A,∨,∧,→,0,1〉) be an implicative lattice (a
Heyting algebra).

1 A full twist-structure over A is an algebra

A./ = 〈A× A,∨,∧,→, (⊥, ) ∼〉

with twist-operations:

(a,b) ∨ (c,d) := (a ∨ c,b ∧ d), (a,b) ∧ (c,d) := (a ∧ c,b ∨ d)

(a,b)→ (c,d) := (a→ c,a ∧ d)

∼ (a,b) := (b,a), (⊥ := (0,1)).

2 A twist-structure over A is a subalgebra B of A./ such that
π1(B) = A

3 S./(A) is the class of all twist-structures over A.
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Twist-structures

Let B ∈ S./(A). For a formula ϕ, B |=./ ϕ if

π1v(ϕ) = 1

for any B-valuation v .

|=./ ϕ (|=⊥./ ϕ) means that B |=./ ϕ for any twist-structure B over an
implicative lattice (a Heyting algebra).

Theorem (Completeness)

ϕ ∈ N4 ⇔ |=./ ϕ;

ϕ ∈ N4⊥ ⇔ |=⊥./ ϕ
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Invariants of twist-structures

For an implicative lattice A, denote

Fd (A) = {a ∨ (a→ b) | a ∈ A}

If A is a Heyting algebra, then

Fd (A) = {a ∨ ¬a | a ∈ A}

Let A be a Heyting algebra, ∇ be a filter on A such that
Fd (A) ⊆ ∇, and let ∆ be an ideal on A. Then there exists a
twist-structure Tw(A,∇,∆) ∈ S./(A) with the universe

|Tw(A,∇,∆)| = {(a,b)| a,b ∈ A,a ∨ b ∈ ∇,a ∧ b ∈ ∆}.
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Invariants of twist-structures

Let A be a Heyting algebra and B ∈ S./(A). We define

∇(B) := {a ∨ b| (a,b) ∈ B}, ∆(B) := {a ∧ b| (a,b) ∈ B}.

Then Fd (A) ⊆ ∇(B) is a filter on A and ∆(B) is an ideal on A.
Moreover,

B = Tw(A,∇(B),∆(B)).

Let B ∈ S./(A).

B |= N3 iff ∇(B) = {0} iff a ∧ b = 0 for all (a,b) ∈ B

[Sendlewski, 1984]
B |= N3 iff B = Tw(A,∇(B), {0}) and Fd (B) ⊆ ∇(B)
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Homomorphisms of twist-structures

For Bi = Tw(Ai ,∇(Bi),∆(Bi)), i = 1,2 and
f : B1 → B2 is a homomorphism, then for a ∈ A1 we define

f ′(a) = π1f ((a,b)),

where b is such that (a,b) ∈ B1.

Then f ′ : A1 → A2 is well defined and is a homomorphism.
Moreover,

f ′(∇(B1)) ⊆ ∇(B2) and f ′(∆(B1)) ⊆ ∆(B2).
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Homomorphisms of twist-structures

If f : A1 → A2 is a homomorphism such that

f (∇(B1)) ⊆ ∇(B2) and f (∆(B1)) ⊆ ∆(B2),

and h : B1 → B2 is such that h′ = f , then

h((a,b)) = (f (a), f (b)).

If B ∈ S./(A), then

Con(B) ∼= Con(A);
B is subdirectly irreducible iff A is subdirectly irreducible.
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Nelson lattices

A = 〈A,∨,∧,→,∼, 〉 is an N4-lattice if:

1 〈A,∨,∧,∼〉 is a De Morgan algebra;

2 �, where a � b denotes (a→ b)→ (a→ b) = a→ b, is a
preordering on A;

3 ≈:=� ∩ �−1 is a congruence wrt ∨,∧,→ and
A./ := 〈A,∨,∧,→〉/ ≈ is an implicative lattice;

4 ∼ (a→ b) ≈ a∧ ∼ b;

5 a ≤ b if and only if a � b and ∼ b �∼ a.

A |= ϕ iff ϕ→ ϕ = ϕ is an identity on A
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Nelson lattices

1 A = 〈A,∨,∧,→,∼,⊥,1〉 is a bounded N4-lattice if
A = 〈A,∨,∧,→,∼〉 is an N4-lattice and ⊥, 1 are the least and the
greatest elements

2 If A is an implicative lattice (a Heyting algebra) and
B ∈ S./(A), then B is a (bounded) N4-lattice

3 If B is an N4-lattice, then

h(a) = ([a]≈, [∼ a]≈)

embeds B into (B./)./

Sergei Odintsov ( Sobolev Institute of Mathematics odintsov@math.nsc.ru )Nelson Dualities MM’13 24 / 49



Nelson lattices

1 A = 〈A,∨,∧,→,∼,⊥,1〉 is a bounded N4-lattice if
A = 〈A,∨,∧,→,∼〉 is an N4-lattice and ⊥, 1 are the least and the
greatest elements

2 If A is an implicative lattice (a Heyting algebra) and
B ∈ S./(A), then B is a (bounded) N4-lattice

3 If B is an N4-lattice, then

h(a) = ([a]≈, [∼ a]≈)

embeds B into (B./)./

Sergei Odintsov ( Sobolev Institute of Mathematics odintsov@math.nsc.ru )Nelson Dualities MM’13 24 / 49



Nelson lattices

1 A = 〈A,∨,∧,→,∼,⊥,1〉 is a bounded N4-lattice if
A = 〈A,∨,∧,→,∼〉 is an N4-lattice and ⊥, 1 are the least and the
greatest elements

2 If A is an implicative lattice (a Heyting algebra) and
B ∈ S./(A), then B is a (bounded) N4-lattice

3 If B is an N4-lattice, then

h(a) = ([a]≈, [∼ a]≈)

embeds B into (B./)./

Sergei Odintsov ( Sobolev Institute of Mathematics odintsov@math.nsc.ru )Nelson Dualities MM’13 24 / 49



Nelson lattices

1 A = 〈A,∨,∧,→,∼,⊥,1〉 is a bounded N4-lattice if
A = 〈A,∨,∧,→,∼〉 is an N4-lattice and ⊥, 1 are the least and the
greatest elements

2 If A is an implicative lattice (a Heyting algebra) and
B ∈ S./(A), then B is a (bounded) N4-lattice

3 If B is an N4-lattice, then

h(a) = ([a]≈, [∼ a]≈)

embeds B into (B./)./

Sergei Odintsov ( Sobolev Institute of Mathematics odintsov@math.nsc.ru )Nelson Dualities MM’13 24 / 49



Nelson lattices

1 A = 〈A,∨,∧,→,∼,⊥,1〉 is a bounded N4-lattice if
A = 〈A,∨,∧,→,∼〉 is an N4-lattice and ⊥, 1 are the least and the
greatest elements

2 If A is an implicative lattice (a Heyting algebra) and
B ∈ S./(A), then B is a (bounded) N4-lattice

3 If B is an N4-lattice, then

h(a) = ([a]≈, [∼ a]≈)

embeds B into (B./)./

Sergei Odintsov ( Sobolev Institute of Mathematics odintsov@math.nsc.ru )Nelson Dualities MM’13 24 / 49



Nelson lattices

1 Let (a,b) ∈ B ∈ S./(A).

(a,b)→ (a,b) = (1,a ∧ b)

Thus,
(a,b)→ (a,b) = (a,b) iff a = 1

2 In this way,
B |=./ ϕ iff ϕ→ ϕ = ϕ is an identity on B

3 N4 (N4⊥) is complete wrt the class of (bounded) N4-lattices
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Topological semantics: historical remarks

[M. Stone, 1936]
Duality of Boolean algebras and Stone spaces

(compact totally disconnected spaces)

[M. Stone 1937]
“Less satisfactory” duality for distributive lattices

[H. Priestley 1970]
Duality of distributive lattices and Priestley spaces

(compact totally order-disconnected spaces)

[R. Cignoli 1986, A. Sendlewski 1990]
Priestley duality for N3-Lattices (models of explosive Nelson’s
logic N3) based on interpolation property [Monteiro 1963]
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Priestley Spaces

X = (X ,≤, τ) is an ordered topological space if ≤ is a partial
order on X and τ a topology on X .

X is a totally order-disconnected topological space if for any
x , y ∈ X with x 6≤ y , there is a clopen cone U such that x ∈ U and
y 6∈ U.

Priestley space is a compact totally order-disconnected
topological space.

T is the category of Priestley spaces and order preserving
continuous functions.
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Distributive lattices→ Priestley spaces

D is the category of bounded distributive lattices and their
homomorphisms.
For A ∈ Ob(D) define

X(A) = (X ,⊆, τ), where

1 X is the set of prime filters on A;
2 ⊆ is the set inclusion;
3 τ is given by the subbase:

σA(a) := {P ∈ X | a ∈ P} and X \ σA(a), where a ∈ A

For f : A → B, define X(f ) : X(B)→ X(A) by:

X(f )(P) := f−1(P)
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Priestley spaces→ Distributive lattices

For X ∈ Ob(T ), D(X ) is the lattice of clopen cones in X .

For a T -morphism f : X → X ′,

D(f ) : D(X ′)→ D(X )

is given by the prescription D(f )(U) := f−1(U).
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Priestley Duality

X : D → T and D : T → D are contravariant functors.

For X ∈ Ob(T ), εX : X → XD(X ) is a T -isomorphism.

εX (x) := {U ∈ D(X ) | x ∈ U}

For A ∈ Ob(D), σA : A → DX(A) is a lattice isomorphism.

σA(a) := {P ∈ X | a ∈ P}
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Priestley duality

σ : 1D ∼= D ◦ X and ε : 1T ∼= X ◦ D are natural isomorphisms, i.e.,
for any D-morphism f : A → B and T -morphism g : X → Y, the
diagrams below are commutative.

B

A DX(A)

DX(B)
? ?

-

-

f DX(f )

σA

σB Y

X XD(X )

XD(Y)
? ?

-

-

g XD(f )

εX

εY

Thus, the categories D and T are dually equivalent via functors X
and D.
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Duality for Heyting algebras [Esakia 1974]

Heyting space is a Priestley space X s. t. U ↓ is open for any U
open in X . ( U ↓= {y | y ≤ x for some x ∈ U})

For a Heyting space X , DH(X ) is the lattice D(X ) with the
operation ⊃:

U ⊃ V := X \ (U \ V ) ↓ for any U,V ∈ D(X ).

DH(X ) is a Heyting algebra.

Equivalently,

U ⊃ V = {x ∈ X | ∀y ≥ x(y ∈ U ⇒ y ∈ V )}
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Duality for Heyting algebras [Esakia 1974]

T -morphism f : X → Y is a Heyting function if
f−1(U ↓) = (f−1(U)) ↓ for any U open in Y.

Equivalently, Heyting function is a T -morphism s.t. for all x ∈ X ,

f (x) ↑⊆ f (x ↑),

or, ∀y ≥Y f (x)∃z ≥X x(f (z) = y)

In fact, Heyting functions are continuous p-morphisms [Maximova,
1972]

Categories H∗ of Heyting spaces and functions and H of Heyting
algebras and their homomorphisms are dually equivalent via XH
and DH .
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Priestley duality for De Morgan algebras
[Cornish & Fowler 77]

A De Morgan space is a pair (X ,g), where
X is a Priestley space;
g : X → X is an antimonotonic homeomorphism s.t. g2 = idX .

T -morphism f : (X ,g)→ (X ′,g′) is a De Morgan function if
fg = g′f .
For a De Morgan space (X ,g), put:

M(X ,g) := 〈D(X ),∩,∪,∼,∅,X 〉, where

∼ U := X \ g(U).

For a De Morgan function f : (X ,g)→ (X ′,g′), put

M(f ) = D(f )
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Priestley duality for De Morgan algebras
[Cornish & Fowler 77]

For a De Morgan algebra A, put S(A) := (X(A),g), where

g(P) := A \ P̃, P̃ := {∼ a | a ∈ P}.

For a homomorphism f : A → B of De Morgan algebras, put

S(f ) := X(f )

CategoriesM∗ of De Morgan spaces and functions andM of De
Morgan algebras and their homomorphisms are dually equivalent
via M and S.
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Priestley duality for Kleene algebras
[Cornish & Fowler 79]

A De Morgan algebra A is a Kleene algebra if it satisfies the
identity

x∧ ∼ x ≤ y∨ ∼ y

K is a full subcategory ofM, whose objects are Kleene algebras
A De Morgan space (X ,g) is a Kleene space if

X = X+ ∪ X−,

where X+ := {x | x ≤ g(x)} and X− := {x | x ≥ g(x)}
K∗ is a full subcategory ofM∗, whose objects are Kleene spaces
Categories K∗ and K are dually equivalent via restrictions of M
and S.
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x∧ ∼ x ≤ y∨ ∼ y

K is a full subcategory ofM, whose objects are Kleene algebras
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bounded N4-lattices

A = 〈A,∨,∧,→,∼,⊥,1〉 is a bounded N4-lattice if:

1 〈A,∨,∧,∼,⊥,1〉 is a De Morgan algebra;

2 �, where a � b denotes (a→ b)→ (a→ b) = a→ b, is a
preordering on A;

3 ≈:=� ∩ �−1 is a congruence wrt ∨,∧,→ and
A./ := 〈A,∨,∧,→,⊥,1〉/ ≈ is a Heyting algebra;

4 ∼ (a→ b) ≈ a∧ ∼ b;

5 a ≤ b if and only if a � b and ∼ b �∼ a.
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N3-lattices [Rasiowa58]

1 An N3-lattice A is a bounded N4-lattice s.t. a∧ ∼ a � b for
a,b ∈ A

2 in which case a � b ⇔ a→ b = 1

3 A |= ϕ iff ϕ = 1 is an identity on A

4 N3-lattices are Kleene algebras

5 weak implication via relative pseudo complement in N3-lattices

a→ b = a ⊃ (∼ a ∨ b), where a ⊃ b := sup{x | a ∧ x ≤ b}

6 similar formula for bounded N4-lattices

a→ b =∼ ¬a ⊃ (¬a ∨ b), where ¬a = a→ ⊥
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Special filters [Rasiowa58] on N4-lattices

Let A be an N4-lattice and ∅ 6= F ⊆ A.

F is a special filter of the first kind (sffk) on A if:
1 a ∧ b ∈ F for any a,b ∈ F ,
2 a ∈ F and a � b implies b ∈ F .

The lattice of sffk is isomorphic to the lattice of filters of A./

F is a special filter of the second kind (sfsk) on A if:
1 a ∧ b ∈ F for any a,b ∈ F ,
2 a ∈ F and ∼ b �∼ a implies b ∈ F .

The lattice of sfsk is isomorphic to the lattice of ideals of A./

Every prime (lattice) filter on A is either sffk or sfsk.
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De Morgan space of a bounded N4-lattice A

1 Since A is a De Morgan algebra,
(X(A),g), where g(P) = A \ P̃, P̃ = {∼ a | a ∈ P}, is a De
Morgan space.

2 Put
X1(A) = {P ∈ X(A) | P is a sffk}

X2(A) = {P ∈ X(A) | P is a sfsk}

X+(A) = {P ∈ X(A) | P ⊆ g(P)}

X−(A) = {P ∈ X(A) | g(P) ⊆ P}

3 g(X1(A)) = X2(A) and g(X+(A)) = X−(A)

4 A is an N3-lattice iff
X1(A) = X+(A) and X2(A) = X−(A)
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N3-spaces [Cignoli 86, Sendlewski 90]

X = (X ,≤, τ, g), where X is a set, ≤ a partial order on X , g : X → X ,
and τ is a topology on X , is an N3-space if:

1 (X ,≤, τ, g) is a Kleene space, X = X+ ∪ X−, where
X+ := {x | x ≤ g(x)} and X− := {x | x ≥ g(x)};

2 (X+,≤�X+ , τ �X+) is a Heyting space;

3 (Monteiro Interpolation Property) for any x ∈ X+ and y ∈ X−, if
x ≤ y , then there exists z ∈ X s.t. x ,g(y) ≤ z ≤ g(x), y

x

g(x) y

z

g(y)
�
�

@
@

�
�

@
@
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N3-function [Cignoli 86, Sendlewski 90]

f : (X ,≤, τ, g)→ (Y ,≤′, τ ′,g′) is an N3-function if:

1 f : (X ≤, τ, g)→ (Y ,≤′, τ ′,g′) is a De Morgan function, i.e., an
order preserving continuous mapping s. t. fg = g′f ;

2 f �X+ is a Heyting function from X+ to Y+.
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N3-Duality [Cignoli 86, Sendlewski 90]

1 Let A be an N3-lattice. Then De Morgan space

M(A) := (X(A),⊆, τA,gA)

is an N3-space

2 If f : A → B is a homomorphism of N3-lattices, then

M(f ) : M(B)→ M(A)

is an N3-function.
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N3-Duality [Cignoli 86, Sendlewski 90]

1 Let X = (X ,≤, τ, g) be an N3-space. Then
N3(X ) = 〈D(X ),∪,∩,→,∼,∅,X 〉, where

∼ U := X \ g(U),

U → V := X \ ((U ∩ g(U)) \ V ) ↓

(compare with a→ b = a ⊃ (∼ a ∨ b))

is an N3-lattice.
2 For an N3-function f : (X ,≤, τ, g)→ (Y ,≤′, τ ′,g′), put

N3(f ) := D(f )

3 Categories N ∗3 of N3-spaces and N3-functions and N3 of
N3-lattices and their homomorphisms are dually equivalent via N3

and the restriction of S.
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N4-spaces

Consider a tuple X = (X ,X 1,≤, τ, g), where X is a set, X 1 ⊆ X , ≤ a
partial order on X , g : X → X , and τ is a topology on X . Put

X 2 := g(X 1), X+ := {x ∈ X | x ≤ g(x)}, X− := {x ∈ X | g(x) ≤ x}.

X is said to be an N4-space if:

1 (X ,≤, τ, g) is a De Morgan space;
2 X 1 is closed in τ , X = X 1 ∪ X 2, and X 1 ∩ X 2 = X+ ∩ X−;
3 (X 1,≤�X 1 , τ �X 1) is a Heyting space;
4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X+, y ∈ X−, and

there exists z ∈ X s.t. x ,g(y) ≤ z ≤ g(x), y ;
5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X+, y ∈ X−, and

x ≤ g(y).
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X 2 := g(X 1), X+ := {x ∈ X | x ≤ g(x)}, X− := {x ∈ X | g(x) ≤ x}.

X is said to be an N4-space if:

1 (X ,≤, τ, g) is a De Morgan space;
2 X 1 is closed in τ , X = X 1 ∪ X 2, and X 1 ∩ X 2 = X+ ∩ X−;
3 (X 1,≤�X 1 , τ �X 1) is a Heyting space;
4 for any x ∈ X 1 and y ∈ X 2, if x ≤ y , then x ∈ X+, y ∈ X−, and

there exists z ∈ X s.t. x ,g(y) ≤ z ≤ g(x), y ;
5 for any x ∈ X 2 and y ∈ X 1, if x ≤ y , then x ∈ X+, y ∈ X−, and

x ≤ g(y).
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N4-function

f : (X ,X 1,≤, τ, g)→ (Y ,Y 1,≤′, τ ′,g′) is an N4-function if:

1 f : (X ≤, τ, g)→ (Y ,≤′, τ ′,g′) is a De Morgan function, i.e., an
order preserving continuous mapping s. t. fg = g′f ;

2 f (X 1) ⊆ Y 1;

3 f �X 1 is a Heyting function.
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Duality

1 Let A be a bounded N4-lattice. Then

O(A) := (X(A),X1(A),⊆, τA,gA),

where
X(A) are all prime filters on A
X1(A) are all sffk in X(A)
τA and gA as for De Morgan algebras

is an N4-space

2 If f : A → B is a homomorphism of bounded N4-lattices, then

O(f ) := X(f )

is an N4-function.
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Duality

1 Let X = (X ,X 1,≤, τ, g) be an N4-space. Then
N(X ) = 〈D(X ),∪,∩,→,∼,∅,X 〉, where

∼ U := X \ g(U),

U → V := (X 1 \ ((U \ V ) ∩ X 1) ↓) ∪ (X 2 \ (g(U) \ V )),

(compare with (a,b)→ (c,d) = (a→ c,a ∧ d))

is an N4⊥-lattice.
2 For an N4-function f : (X ,X 1,≤, τ, g)→ (Y ,Y 1,≤′, τ ′,g′), put

N(f ) := D(f )

3 Categories N ∗4 of N4-spaces and N4-functions and N4 of
bounded N4-lattices and their homomorphisms are dually
equivalent via N and the restriction of O.
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N ∗3 is a full subcategory of N ∗4

1 A tuple (X ,≤, τ, g) is an N3-space if and only if (X ,X+,≤, τ, g) is
an N4-space
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