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Definition
A subgroup H of a group G is said to be pronormal if H and Hg

are conjugate in 〈H,Hg 〉 for every g ∈ G .

The notation “H prn G ” means “H is a pronormal subgroup of G ”.

Examples of pronormal subgroups
• Normal subgroups;
• Maximal subgroups;
• Sylow subgroups in finite groups;
• Sylow subgroups of normal subgroups in finite groups.
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Definition
Let p ∈ P. A subgroup P of a group G is called
a Sylow p-subgroup if
• |P| is a power of p (i. e., P is a p-group) while
• |G : P| is not divisible by p.

Theorem (L. Sylow, 1872)
Let G be a finite group and let p be a prime. Then
Ep G possesses a Sylow p-subgroup;
Cp every two Sylow p-subgroups are conjugate;
Dp every p-subgroup of G is included in a Sylow p-subgroup

of G .

We denote by Sylp(G ) the set of Sylow p-subgroup of a finite
group G .
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Corollary
Let G be a finite group. Then P prn G for every P ∈ Sylp(G ).

Corollary
Let G be a finite group and A E G . Then P prn G for every
P ∈ Sylp(A).

Corollary (Frattini Argument)

Let G be a finite group, A E G , and P ∈ Sylp(A). Then
G = ANG (P).
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The Frattini Argument is closely connected with the
pronormality.

If A E G and H ≤ A then
G = ANG (H) iff H and Hg are conjugate in A for every g ∈ G
(we write HA = HG , were HG = {Hg | g ∈ G}).
As a consequence, if H prn G then G = ANG (H).
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A natural generalization of the concept of a Sylow p-subgroup
is that of a π-Hall subgroup.
We fix a set π ⊆ P. Put π′ = P \ π.

Definition
A subgroup H of a finite group G is called a π-Hall subgroup if
• every prime divisor of |H| belongs to π (H is a π-subgroup)
and

• every prime divisor of |G : H| belongs to π′.

The set of all π-Hall subgroups of G is denoted by Hallπ(G ).

If π = {p} then Hallπ(G ) = Sylp(G ).

Danila O. Revin Hall subgroups and the pronormality



What properties of Sylow subgroups hold for Hall subgroups?

What can one say about the pronormality of Hall subgroups?
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Hall subgroups have some nice properties.

Proposition
Let G be a finite group, A E G , and H ∈ Hallπ(G ). Then
• H ∩ A ∈ Hallπ(A) and
• HA/A ∈ Hallπ(G/A).
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The analogue of Sylow’s Theorem fails for Hall subgroups:
• In Alt5 of order 60 = 22 · 3 · 5, there are no elements and
subgroups of order 15, hence Alt5 does not have {3, 5}-Hall
subgroups.

• In GL3(2) of order 168 = 23 · 3 · 7, there are exactly two
conjugacy classes of subgroups of order 23 · 3 (= {2, 3}-Hall
subgroups): the stabilizers of lines and planes, respectively.

• Every subgroup of order 12 = 22 · 3 (= a {2, 3}-Hall
subgroup) of Alt5 is a point stabilizer, and all point
stabilizers are conjugate. On the other hand, Alt5 includes
a {2, 3}-subgroup 〈(123), (12)(45)〉 ' Sym3 which acts
without fixed points.
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Theorem (P. Hall, 1928)
Let G be a solvable finite group and let π be a set of primes.
Then
Eπ G possesses a π-Hall subgroup;
Cπ every two π-Hall subgroups of G are conjugate;
Dπ every π-subgroup of G is included in a π-Hall subgroup of G .

Corollary
Let G be a solvable group and H ∈ Hallπ(G ). Then H prn G .
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Definition (P.Hall)
Given a set of primes π, we say that a finite group G satisfies
Eπ if Hallπ(G ) 6= ∅ (i.e., there exists a π-Hall subgroup in G );
Cπ if G satisfies Eπ and every two π-Hall subgroups of G are

conjugate;
Dπ if G satisfies Cπ and every π-subgroup of G is included in a

π-Hall subgroup.

A group G satisfying Eπ (resp., Cπ, Dπ) is called an Eπ- (resp.,
Cπ-, Dπ-) group.

Given a set of primes π, we also denote by Eπ, Cπ, and Dπ the
classes of all finite Eπ-, Cπ-, and Dπ- groups, respectively.
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There exist sets π ⊆ P such that Eπ = Cπ.

Theorem (F.Gross, 1987)
If 2 6∈ π then Eπ = Cπ.

Proposition
If Eπ = Cπ for some π then π-Hall subgroups of finite groups are
pronormal.

If H ∈ Hallπ(G ) then, given g ∈ G , we have 〈H,Hg 〉 ∈ Eπ = Cπ,
and hence H and Hg are conjugate in 〈H,Hg 〉.

Corollary
Hall subgroups of odd order are pronormal.
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Let π ⊆ P and Eπ 6= Cπ.
Take X ∈ Eπ \ Cπ and non-conjugate U,V ∈ Hallπ(X ).
Let n ∈ π′. Consider

Y = X × X × · · · × X × X︸ ︷︷ ︸
n times

and τ ∈ Aut(Y ), where
τ : (x1, x2, . . . , xn−1, xn) 7→ (x2, x3, . . . , xn, x1)

for all x1, x2, . . . , xn−1, xn ∈ X .
Let G = Y h 〈τ〉 ' X o Zn. The subgroups

H = V × U × · · · × U × U︸ ︷︷ ︸
n−1 times

,

K = U × U × · · · × U︸ ︷︷ ︸
n−1 times

×V

of Y are π-Hall in Y and in G . Moreover, Hτ = K . But H and
K are not conjugate in Y , and hence are non-pronormal in G .
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In the talk we are concerned with the following problems:

• What can one say about Eπ-groups in which there exists a
pronormal π-Hall subgroup?

(the results are obtained in collaboration with
Prof. E.P.Vdovin)

• What can one say about Eπ-groups in which every π-Hall
subgroup is pronormal?

(the results are obtained in collaboration with
Prof. Wenbin Guo)
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On the existence of pronormal subgroups in Eπ-groups
in collaboration with Prof. E.P.Vdovin
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Theorem (E.Vdovin, D.R., 2013)
In Cπ-groups, every π-Hall subgroup is pronormal.

This theorem is equivalent to the following statement.

Theorem (E.Vdovin, D.R., 2013)

Let G ∈ Cπ, H ∈ Hallπ(G ), and H 6 M 6 G . Then M ∈ Cπ.

In order to prove these theorems, the classification of finite
simple groups and the classification of Hall subgroups in such
groups are used.
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Main ingredients of our proof:
• The theorem on the number of classes of conjugate π-Hall
subgroups in finite simple groups (the Class Number
Theorem);

• The converse to Gross’ theorem on the existence of π-Hall
subgroups;

• The theorem on the pronormality of Hall subgroups of
finite simple groups.
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The same ingredients are sufficient to prove a statement stronger
than the pronormality of π-Hall subgroups in Cπ-groups.

Theorem 1 (E.Vdovin, D.R., new)
If G ∈ Eπ then G has a pronormal π-Hall subgroup.

Thus, the class of groups containing a pronormal π-Hall
subgroup coincides with Eπ.

Theorem 2 (E.Vdovin, D.R., new)

If G ∈ Eπ and A E G then there exists H ∈ Hallπ(A) such that
H prn G .

Theorem 3 (Frattini Argument, E.Vdovin, D.R., new)

If G ∈ Eπ and A E G then there exists H ∈ Hallπ(A) such that
G = ANG (H).
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Theorem 3 (Frattini Argument, E.Vdovin, D.R., new)

If G ∈ Eπ and A E G then G = ANG (H) for some H ∈ Hallπ(A).

Corollary (E.Vdovin, D.R., 2006)
If G ∈ Dπ and A E G then A ∈ Dπ.

Corollary (E.Vdovin, D.R., 2010)

If G ∈ Cπ, H ∈ Hallπ(G ), and A E G then HA ∈ Cπ.

Corollary (E.Vdovin, D.R., 2011)

If G ∈ Eπ and AEG then Hallπ(G/A) = {HA/A | H ∈ Hallπ(G )}.
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Corollary (E.Vdovin, D.R., new)

Let A E G . Then G ∈ Eπ iff A ∈ Eπ, G/A ∈ Eπ, and there is
H ∈ Hallπ(A) such that HA = HG .

Corollary (E.Vdovin, D.R., new)

Let G ∈ Eπ, A ≤ Aut(G ) and (|G |, |A|) = 1. Then there exists an
A-invariant H ∈ Hallπ(G ).
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Theorem 1
If G ∈ Eπ then H prn G for some H ∈ Hallπ(G ).

Theorem 2
If G ∈ Eπ and A E G then H prn G for some H ∈ Hallπ(A).

Theorem 3 (Frattini Argument for Hall subgroups)

If G ∈ Eπ and A E G then G = ANG (H) for some H ∈ Hallπ(A).

Compare these statements with their analogs for Sylow
subgroups.
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Corollary 1 to Sylow’s Theorem
If G is a group then P prn G for every P ∈ Sylp(G ).

Corollary 2 to Sylow’s Theorem
If G is a group and A E G then P prn G for every P ∈ Sylp(A).

Corollary 3 to Sylow’s Theorem (Frattini Argument for Sylow
subgroups)

If G is a group and AEG then G =ANG (P) for every P∈Sylp(A).
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Let π ⊆ P and Eπ 6= Cπ.
Take X ∈ Eπ \ Cπ and non-conjugate U,V ∈ Hallπ(X ).
Let n ∈ π′. Consider

Y = X × X × · · · × X × X︸ ︷︷ ︸
n times

and τ ∈ Aut(Y ), where
τ : (x1, x2, . . . , xn−1, xn) 7→ (x2, x3, . . . , xn, x1)

for all x1, x2, . . . , xn−1, xn ∈ X .
Let G = Y h 〈τ〉 ' X o Zn. The subgroups

H = V × U × · · · × U × U︸ ︷︷ ︸
n−1 times

,

K = U × U × · · · × U︸ ︷︷ ︸
n−1 times

×V

of Y are π-Hall in Y and in G . Moreover, Hτ = K .
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Thus, in Theorems 1–3, one cannot replace
“for some” with “for every”.
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Theorem 1
If G ∈ Eπ then H prn G for some H ∈ Hallπ(G ).

Theorem 2
If G ∈ Eπ and A E G then H prn G for some H ∈ Hallπ(A).

Theorem 3 (Frattini Argument for Hall subgroups)

If G ∈ Eπ and A E G then G = ANG (H) for some H ∈ Hallπ(A).

Can one replace the condition G ∈ Eπ in Theorems 2 and 3 with
the weaker one A ∈ Eπ?
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Let π = {2, 3} and let A = GL3(2). Then A has exactly two
classes of conjugate π-Hall subgroups with the representatives

U =

(
GL2(2) ∗

1

)
andV =

(
1 ∗

GL2(2)

)
.

The first one consists of the line stabilizers in the natural
representation of A, and the second one consists of the plane
stabilizers.

Consider the automorphism ι : x 7→ (x t)−1, x ∈ A, of A (here
x t is the transpose of x). Then |ι| = 2 and ι interchanges UA

and V A.

Let G = A h 〈ι〉. Then KA 6= KG for every K ∈ Hallπ(A). In
particular, K is non-pronormal in G and G 6= ANG (K ).

Suppose, H ∈ Hallπ(G ). Then G = HA and G stabilizes
(H ∩ A)A. But (H ∩ A)A coincides either with UA or with V A,
and hence G does not stabilize (H ∩ A)A. A contradiction.

Thus, G /∈ Eπ.
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Thus, in Theorems 2 and 3, one cannot replace
“G ∈ Eπ” with “A ∈ Eπ”.
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In our proof of this Theorem, we use the classification of finite
simple groups and the classification of Hall subgroups in such
groups.
If G is a finite group then we denote by kπ(G ) the number of
classes of conjugate π-Hall subgroups of G .

Class Number Theorem (E.Vdovin andD.R., 2010,modCFSG)
Let S ∈ Eπ be a finite simple group. Then the following
statements hold:
• if 2 6∈ π, then kπ(S) = 1;
• if 3 6∈ π, then kπ(S) ∈ {1, 2};
• if 2, 3 ∈ π, then kπ(S) ∈ {1, 2, 3, 4, 9}.

In particular, kπ(S) is a bounded π-number.
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Furthermore, if S E G then we denote by kG
π (S) the number of

classes of conjugate π-Hall subgroups K of S such that
K = H ∩ S for some H ∈ Hallπ(G ).
As a consequence of the ClassNumberTheorem, we have

CNT-Corollary
Let G ∈ Eπ possess a unique minimal normal subgroup S and let
S be a finite simple group. Then the following statements hold:
• if 2 6∈ π, then kG

π (S) = 1;
• if 3 6∈ π, then kG

π (S) ∈ {1, 2};
• if 2, 3 ∈ π, then kG

π (S) ∈ {1, 2, 3, 4, 9}.
In particular, kG

π (S) is a π-number.
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If G ∈ Eπ and A E G then HG = HA for some H ∈ Hallπ(A).

Firstly, let A be the unique minimal normal subgroup of G and
let A be simple.
Denote by Ω the set of classes of conjugate π-Hall subgroups K
of S such that K = H ∩ A for some H ∈ Hallπ(G ).
Then |Ω| = kG

π (A) and G acts on Ω in a natural way.
Consider

H ∈ Hallπ(G ) and K = (H ∩ A)A = {Ha ∩ A | a ∈ A} ∈ Ω.
Since H ∩ A E H, H leaves invariant K, and hence H 6 GK.
Thus, |KG | divides |G : H| and |KG | is a π′-number.
On the other hand, |KG | ≤ |Ω| = kG

π (A). In view of
CNT-Corollary, one of the following statements holds:
• |KG | is a π-number;
• 2, 3 ∈ π, kG

π (A) = 9, and |KG | ∈ {5, 7}.
In the first case, |KG | = 1, i. e. (H ∩ A)A = (H ∩ A)G .
In the second case, the power of every orbit LG of G on Ω that
differs from KG is at most 4. Hence |LG | is a π-number and
|LG | = 1.
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Now consider the situation where A is a minimal normal
subgroup ( A is not necessarily simple and G does not
necessarily have a unique minimal normal subgroup).
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Definition
Suppose A,B,H are subgroups of G such that B E A.
Then NH(A/B) = NH(A)∩NH(B) is the normalizer of A/B in H.
If x ∈ NH(A/B) then x induces an automorphism of A/B by

Ba 7→ Bx−1ax .
Thus there exists a homomorphism NH(A/B)→ Aut(A/B).
The image of NH(A/B) under this homomorphism is denoted by
AutH(A/B) and is called the group of H-induced automorphisms
of A/B .

Theorem (F.Gross, 1986)
Let 1 = G0 < G1 < . . . < Gn = G be a composition series for a
finite group G which is a refinement of a chief series for G . If
AutG (Gi/Gi−1) ∈ Eπ for all i = 1, . . . , n, then G ∈ Eπ.

Theorem (E.Vdovin and D.R., 2011)
Let 1 = G0 < G1 < . . . < Gn = G be a composition series for a
finite group G . If G ∈ Eπ then AutG (Gi/Gi−1) ∈ Eπ for all i .
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In the considered situation, A = S1 × · · · × Sn,
where Si are simple and Si = Sgi

1 for some gi ∈ G , i = 1, . . . , n.

Then g1, . . . , gn is a right transversal for NG (S1) in G .

By the converse to Gross’ Theorem,
AutG (S1) = NG (S1)/CG (S1) ∈ Eπ.

By the above-considered case, S1 ∼= Inn(S1) includes an
AutG (S1)-invariant conjugacy class K of π-Hall subgroups.

Let U ∈ K. Then
• Ugi ∈ Hallπ(Si ),
• V = 〈Ugi | i = 1, . . . , n〉 ∈ Hallπ(A), and
• V G = V A, i.e., G = ANG (V ).
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Now, one can investigate the general situation in Theorem 3 by
using induction on |G |.
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Theorem 1: In an Eπ-group G , H prn G for some H ∈ Hallπ(G ).

Theorem (E.Vdovin, D.R., 2012)
In the finite simple groups, the Hall subgroups are pronormal.

Thus, we can assume that G is not simple. Let A be a minimal
normal subgroup of G . Then A = S1 × · · · × Sn,
where Si are simple. Moreover, K ∈ Hallπ(A)⇒ K prn A.
By Theorem 1, G = ANG (K ) for some K ∈ Hallπ(A).
By induction, H/K prn NG (K )/K for some
H/K ∈ Hallπ(NG (K )/K ) and H ∈ Hallπ(G ).

H/K prn NG (K )/K ⇒ HA/A prn ANG (K )/A = G/A.

Proposition
Let H ∈ Hallπ(G ), A E G , and
• HA/H prn G/A;
• H ∩ A prn A;
• (H ∩ A)A = (H ∩ A)G .

Then H prn G .
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Conjecture 1
Every Hall subgroup is pronormal in its normal closure.

If H ∈ Hallπ(G ) then 〈HG 〉 = Oπ′
(G ).

Conjecture 1’

If H ∈ Hallπ(G ) and 〈HG 〉 = G then H prn G .

A subgroup H of G is said to be strongly pronormal if K g is
conjugate to a subgroup of H in 〈H,K g 〉 for every g ∈ G and
K ≤ H.

Conjecture 2
Every pronormal Hall subgroup is strongly pronormal.

Conjecture 3
Every Eπ-group contains a strongly pronormal π-Hall subgroup.

Danila O. Revin Hall subgroups and the pronormality



On Eπ-groups in which every π-Hall subgroup is pronormal
In collaboration with Prof. Guo Wenbin
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By analogy with P.Hall’s notation, we will say that a group G
satisfies Pπ (is a Pπ-group, belongs to the class Pπ) if G ∈ Eπ
and every π-Hall subgroups in G is pronormal.

Theorem
(1) If G ∈ Eπ is simple then G ∈ Pπ.
(2) Cπ ⊆ Pπ ⊆ Eπ.
(3) If Cπ ⊂ Eπ then Cπ ⊂ Pπ ⊂ Eπ.
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sX= {G | G is isomorphic to a subgroup of H ∈ X};
qX= {G | G is an epimorphic image of H ∈ X};
snX= {G | G is isomorphic to a subnormal subgroup ofH ∈ X}
r0X= {G | ∃Ni E G (i = 1, . . . ,m) with G/Ni ∈ X and
m⋂

i=1
Ni = 1};

n0X= {G | ∃NiEEG (i = 1, . . . ,m) with Ni ∈ X and G =
〈N1, . . . ,Nm〉};
eX= {G | G possesses a series 1 = G0 E G1 E · · ·E Gm = G
with Gi/Gi−1 ∈ X (i = 1, . . . ,m)}.
If π = {3, 5} then the classes Dπ, Cπ, Pπ, and Eπ are not
s-closed: SL2(16) ∈ Dπ while SL2(4) ∼= Alt5 /∈ Eπ.
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Table: Is it true that cX = X, X ∈ {Dπ, Eπ, Cπ,Pπ}?

c Dπ Eπ Cπ Pπ
s no no no no
q yes yes yes yes
sn yes yes no no
r0 yes yes yes yes
n0 yes no yes no
e yes no yes no

Theorem (Wenbin Guo, D.R., mod CFSG)
The following statements hold:
(A) cPπ = Pπ for every set π of primes and c ∈ {q,r0}.
(B) If c ∈ {s, sn,n0,e}, then cPπ 6= Pπ for a set π of primes.
(C ) If c ∈ {sn,e} and cPπ = Pπ for a set π of primes then

cEπ = Eπ and cCπ = Cπ.
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Corollary (Wenbin Guo, D.R., mod CFSG)

Let c ∈ {s,q, sn,r0,n0,e}. Then the following statements are
equivalent:
(1) cPπ = Pπ for every set π of primes;
(2) cEπ = Eπ and cCπ = Cπ for every set π of primes.

Corollary (Wenbin Guo, D.R., mod CFSG)
For a set π of primes, Pπ is a saturated formation.

Corollary (Wenbin Guo, D.R.)

There exist sets π (for example, π = {2, 3}) of primes such that
Pπ is not a Fitting class.

Proposition (mod CFSG)

If Eπ = Cπ and c ∈ {q, sn,r0,n0,e} then cPπ = Pπ.
In particular, Pπ is a Fitting class.
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Thank you for your attention!
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