Hall subgroups and the pronormality

Danila O. Revin¹

¹Sobolev Institute of Mathematics, Novosibirsk, Russia revin@math.nsc.ru

Novosibirsk, November 14, 2013

Danila O. Revin Hall subgroups and the pronormality

Definition

A subgroup H of a group G is said to be *pronormal* if H and H^g are conjugate in $\langle H, H^g \rangle$ for every $g \in G$.

The notation " $H \operatorname{prn} G$ " means "H is a pronormal subgroup of G".

Examples of pronormal subgroups

- Normal subgroups;
- Maximal subgroups;
- Sylow subgroups in finite groups;
- Sylow subgroups of normal subgroups in finite groups.

Definition

Let $p \in \mathbb{P}$. A subgroup P of a group G is called a *Sylow* p-subgroup if

- |P| is a power of p (i. e., P is a p-group) while
- |G:P| is not divisible by p.

Theorem (L. Sylow, 1872)

Let ${\boldsymbol{G}}$ be a finite group and let ${\boldsymbol{p}}$ be a prime. Then

- \mathcal{E}_p G possesses a Sylow p-subgroup;
- C_p every two Sylow *p*-subgroups are conjugate;
- \mathcal{D}_p every *p*-subgroup of *G* is included in a Sylow *p*-subgroup of *G*.

We denote by $Syl_p(G)$ the set of Sylow *p*-subgroup of a finite group G.

Corollary

Let G be a finite group. Then $P \operatorname{prn} G$ for every $P \in \operatorname{Syl}_p(G)$.

Corollary

Let G be a finite group and $A \leq G$. Then $P \operatorname{prn} G$ for every $P \in \operatorname{Syl}_p(A)$.

Corollary (Frattini Argument)

Let G be a finite group, $A \leq G$, and $P \in Syl_p(A)$. Then $G = AN_G(P)$. The Frattini Argument is closely connected with the pronormality.

If $A \leq G$ and $H \leq A$ then $G = AN_G(H)$ iff H and H^g are conjugate in A for every $g \in G$ (we write $H^A = H^G$, were $H^G = \{H^g \mid g \in G\}$).

As a consequence, if $H \operatorname{prn} G$ then $G = AN_G(H)$.

A natural generalization of the concept of a Sylow *p*-subgroup is that of a π -Hall subgroup. We fix a set $\pi \subseteq \mathbb{P}$. Put $\pi' = \mathbb{P} \setminus \pi$.

Definition

A subgroup H of a finite group G is called a π -Hall subgroup if

- every prime divisor of |H| belongs to π (*H* is a π -subgroup) and
- every prime divisor of |G:H| belongs to π' .

The set of all π -Hall subgroups of G is denoted by $\operatorname{Hall}_{\pi}(G)$. If $\pi = \{p\}$ then $\operatorname{Hall}_{\pi}(G) = \operatorname{Syl}_{p}(G)$. What properties of Sylow subgroups hold for Hall subgroups? What can one say about the pronormality of Hall subgroups? Hall subgroups have some nice properties.

Proposition

Let G be a finite group, $A \trianglelefteq G$, and $H \in Hall_{\pi}(G)$. Then

- $H \cap A \in \operatorname{Hall}_{\pi}(A)$ and
- $HA/A \in Hall_{\pi}(G/A)$.

The analogue of Sylow's Theorem fails for Hall subgroups:

- In Alt₅ of order $60 = 2^2 \cdot 3 \cdot 5$, there are no elements and subgroups of order 15, hence Alt₅ does not have $\{3, 5\}$ -Hall subgroups.
- In GL₃(2) of order $168 = 2^3 \cdot 3 \cdot 7$, there are exactly two conjugacy classes of subgroups of order $2^3 \cdot 3$ (= {2,3}-Hall subgroups): the stabilizers of lines and planes, respectively.
- Every subgroup of order $12 = 2^2 \cdot 3$ (= a {2,3}-Hall subgroup) of Alt₅ is a point stabilizer, and all point stabilizers are conjugate. On the other hand, Alt₅ includes a {2,3}-subgroup $\langle (123), (12)(45) \rangle \simeq \text{Sym}_3$ which acts without fixed points.

Theorem (P. Hall, 1928)

Let **G** be a solvable finite group and let π be a set of primes. Then

- \mathcal{E}_{π} G possesses a π -Hall subgroup;
- C_{π} every two π -Hall subgroups of G are conjugate;
- \mathcal{D}_{π} every π -subgroup of G is included in a π -Hall subgroup of G.

Corollary

Let G be a solvable group and $H \in \text{Hall}_{\pi}(G)$. Then H prn G.

Definition (P.Hall)

Given a set of primes π , we say that a finite group G satisfies

- \mathcal{E}_{π} if $\operatorname{Hall}_{\pi}(G) \neq \emptyset$ (i.e., there exists a π -Hall subgroup in G);
- C_{π} if G satisfies \mathcal{E}_{π} and every two π -Hall subgroups of G are conjugate;
- \mathcal{D}_{π} if G satisfies \mathcal{C}_{π} and every π -subgroup of G is included in a π -Hall subgroup.

A group G satisfying \mathcal{E}_{π} (resp., \mathcal{C}_{π} , \mathcal{D}_{π}) is called an $\mathcal{E}_{\pi^{-}}$ (resp., $\mathcal{C}_{\pi^{-}}$, $\mathcal{D}_{\pi^{-}}$) group.

Given a set of primes π , we also denote by \mathcal{E}_{π} , \mathcal{C}_{π} , and \mathcal{D}_{π} the classes of all finite \mathcal{E}_{π} -, \mathcal{C}_{π} -, and \mathcal{D}_{π} - groups, respectively.

There exist sets $\pi \subseteq \mathbb{P}$ such that $\mathcal{E}_{\pi} = \mathcal{C}_{\pi}$.

Theorem (F.Gross, 1987) If $2 \notin \pi$ then $\mathcal{E}_{\pi} = \mathcal{C}_{\pi}$.

Proposition

If $\mathcal{E}_{\pi} = \mathcal{C}_{\pi}$ for some π then π -Hall subgroups of finite groups are pronormal.

If $H \in \text{Hall}_{\pi}(G)$ then, given $g \in G$, we have $\langle H, H^{g} \rangle \in \mathcal{E}_{\pi} = \mathcal{C}_{\pi}$, and hence H and H^{g} are conjugate in $\langle H, H^{g} \rangle$.

Corollary

Hall subgroups of odd order are pronormal.

Let $\pi \subseteq \mathbb{P}$ and $\mathcal{E}_{\pi} \neq \mathcal{C}_{\pi}$. Take $X \in \mathcal{E}_{\pi} \setminus \mathcal{C}_{\pi}$ and non-conjugate $U, V \in \mathsf{Hall}_{\pi}(X)$. Let $n \in \pi'$. Consider

$$Y = \underbrace{X \times X \times \cdots \times X \times X}_{n \text{ times}}$$

and $\tau \in Aut(Y)$, where $\tau : (x_1, x_2, \dots, x_{n-1}, x_n) \mapsto (x_2, x_3, \dots, x_n, x_1)$ for all $x_1, x_2, \dots, x_{n-1}, x_n \in X$. Let $G = Y \ge \langle \tau \rangle \simeq X \wr \mathbb{Z}_n$. The subgroups

$$H = V \times \underbrace{U \times \cdots \times U \times U}_{n-1 \text{ times}},$$
$$K = \underbrace{U \times U \times \cdots \times U}_{n-1 \text{ times}} \times V$$

of Y are π -Hall in Y and in G. Moreover, $H^{\tau} = K$. But H and K are not conjugate in Y, and hence are non-pronormal in G.

In the talk we are concerned with the following problems:

• What can one say about \mathcal{E}_{π} -groups in which there exists a pronormal π -Hall subgroup?

(the results are obtained in collaboration with Prof. E.P.Vdovin)

• What can one say about \mathcal{E}_{π} -groups in which every π -Hall subgroup is pronormal?

(the results are obtained in collaboration with Prof. Wenbin Guo)

On the existence of pronormal subgroups in \mathcal{E}_{π} -groups in collaboration with Prof. E.P.Vdovin

Theorem (E.Vdovin, D.R., 2013)

In C_{π} -groups, every π -Hall subgroup is pronormal.

This theorem is equivalent to the following statement.

Theorem (E.Vdovin, D.R., 2013)

Let $G \in \mathcal{C}_{\pi}$, $H \in \operatorname{Hall}_{\pi}(G)$, and $H \leqslant M \leqslant G$. Then $M \in \mathcal{C}_{\pi}$.

In order to prove these theorems, the classification of finite simple groups and the classification of Hall subgroups in such groups are used. Main ingredients of our proof:

- The theorem on the number of classes of conjugate π-Hall subgroups in finite simple groups (the Class Number Theorem);
- The converse to Gross' theorem on the existence of π -Hall subgroups;
- The theorem on the pronormality of Hall subgroups of finite simple groups.

The same ingredients are sufficient to prove a statement stronger than the pronormality of π -Hall subgroups in \mathcal{C}_{π} -groups.

Theorem 1 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ then G has a pronormal π -Hall subgroup.

Thus, the class of groups containing a pronormal π -Hall subgroup coincides with \mathcal{E}_{π} .

Theorem 2 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that H prn G.

Theorem 3 (Frattini Argument, E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that $G = AN_G(H)$.

The same ingredients are sufficient to prove a statement stronger than the pronormality of π -Hall subgroups in C_{π} -groups.

Theorem 1 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ then G has a pronormal π -Hall subgroup.

Thus, the class of groups containing a pronormal π -Hall subgroup coincides with \mathcal{E}_{π} .

Theorem 2 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that H prn G.

Theorem 3 (Frattini Argument, E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that $G = AN_G(H)$.

The same ingredients are sufficient to prove a statement stronger than the pronormality of π -Hall subgroups in \mathcal{C}_{π} -groups.

Theorem 1 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ then G has a pronormal π -Hall subgroup.

Thus, the class of groups containing a pronormal π -Hall subgroup coincides with \mathcal{E}_{π} .

Theorem 2 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that H prn G.

Theorem 3 (Frattini Argument, E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that $G = AN_G(H)$.

The same ingredients are sufficient to prove a statement stronger than the pronormality of π -Hall subgroups in C_{π} -groups.

Theorem 1 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ then G has a pronormal π -Hall subgroup.

Thus, the class of groups containing a pronormal π -Hall subgroup coincides with \mathcal{E}_{π} .

Theorem 2 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that H prn G.

Theorem 3 (Frattini Argument, E.Vdovin, D.R., new) If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then there exists $H \in \text{Hall}_{\pi}(A)$ such that $G = AN_G(H)$.

Corollary (E.Vdovin, D.R., 2006) If $G \in \mathcal{D}_{\pi}$ and $A \leq G$ then $A \in \mathcal{D}_{\pi}$.

Corollary (E.Vdovin, D.R., 2010) If $G \in C_{\pi}$, $H \in \text{Hall}_{\pi}(G)$, and $A \leq G$ then $HA \in C_{\pi}$.

Corollary (E.Vdovin, D.R., 2011) If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $\operatorname{Hall}_{\pi}(G/A) = \{HA/A \mid H \in \operatorname{Hall}_{\pi}(G)\}.$

Corollary (E.Vdovin, D.R., 2006) If $G \in \mathcal{D}_{\pi}$ and $A \leq G$ then $A \in \mathcal{D}_{\pi}$.

Corollary (E.Vdovin, D.R., 2010)

If $G \in \mathcal{C}_{\pi}$, $H \in \text{Hall}_{\pi}(G)$, and $A \leq G$ then $HA \in \mathcal{C}_{\pi}$.

Corollary (E.Vdovin, D.R., 2011)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $\operatorname{Hall}_{\pi}(G/A) = \{HA/A \mid H \in \operatorname{Hall}_{\pi}(G)\}.$

Corollary (E.Vdovin, D.R., 2006) If $G \in \mathcal{D}_{\pi}$ and $A \leq G$ then $A \in \mathcal{D}_{\pi}$.

Corollary (E.Vdovin, D.R., 2010) If $G \in C_{\pi}$, $H \in \text{Hall}_{\pi}(G)$, and $A \trianglelefteq G$ then $HA \in C_{\pi}$.

Corollary (E.Vdovin, D.R., 2011)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $\operatorname{Hall}_{\pi}(G/A) = \{HA/A \mid H \in \operatorname{Hall}_{\pi}(G)\}.$

Corollary (E.Vdovin, D.R., 2006) If $G \in \mathcal{D}_{\pi}$ and $A \leq G$ then $A \in \mathcal{D}_{\pi}$.

Corollary (E.Vdovin, D.R., 2010) If $G \in C_{\pi}$, $H \in \text{Hall}_{\pi}(G)$, and $A \leq G$ then $HA \in C_{\pi}$.

Corollary (E.Vdovin, D.R., 2011) If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $\operatorname{Hall}_{\pi}(G/A) = \{HA/A \mid H \in \operatorname{Hall}_{\pi}(G)\}.$

Corollary (E.Vdovin, D.R., new)

Let $A \leq G$. Then $G \in \mathcal{E}_{\pi}$ iff $A \in \mathcal{E}_{\pi}$, $G/A \in \mathcal{E}_{\pi}$, and there is $H \in \operatorname{Hall}_{\pi}(A)$ such that $H^{A} = H^{G}$.

Corollary (E.Vdovin, D.R., new)

Let $G \in \mathcal{E}_{\pi}$, $A \leq \operatorname{Aut}(G)$ and (|G|, |A|) = 1. Then there exists an A-invariant $H \in \operatorname{Hall}_{\pi}(G)$.

Corollary (E.Vdovin, D.R., new)

Let $A \leq G$. Then $G \in \mathcal{E}_{\pi}$ iff $A \in \mathcal{E}_{\pi}$, $G/A \in \mathcal{E}_{\pi}$, and there is $H \in \text{Hall}_{\pi}(A)$ such that $H^A = H^G$.

Corollary (E.Vdovin, D.R., new)

Let $G \in \mathcal{E}_{\pi}$, $A \leq \operatorname{Aut}(G)$ and (|G|, |A|) = 1. Then there exists an A-invariant $H \in \operatorname{Hall}_{\pi}(G)$.

Theorem 1 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ then G has a pronormal π -Hall subgroup.

Corollary (E.Vdovin, D.R., 2013)

In C_{π} -groups, every π -Hall subgroup is pronormal.

Corollary (E.Vdovin, D.R., 2013)

Let $G \in \mathcal{C}_{\pi}$, $H \in \operatorname{Hall}_{\pi}(G)$, and $H \leqslant M \leqslant G$. Then $M \in \mathcal{C}_{\pi}$.

Theorem 1 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ then G has a pronormal π -Hall subgroup.

Corollary (E.Vdovin, D.R., 2013)

In C_{π} -groups, every π -Hall subgroup is pronormal.

Corollary (E.Vdovin, D.R., 2013)

Let $G \in \mathcal{C}_{\pi}$, $H \in \operatorname{Hall}_{\pi}(G)$, and $H \leq M \leq G$. Then $M \in \mathcal{C}_{\pi}$

Theorem 1 (E.Vdovin, D.R., new)

If $G \in \mathcal{E}_{\pi}$ then G has a pronormal π -Hall subgroup.

Corollary (E.Vdovin, D.R., 2013)

In C_{π} -groups, every π -Hall subgroup is pronormal.

Corollary (E.Vdovin, D.R., 2013)

Let $G \in \mathcal{C}_{\pi}$, $H \in \operatorname{Hall}_{\pi}(G)$, and $H \leq M \leq G$. Then $M \in \mathcal{C}_{\pi}$.

Theorem 1

If $G \in \mathcal{E}_{\pi}$ then $H \operatorname{prn} G$ for some $H \in \operatorname{Hall}_{\pi}(G)$.

Theorem 2 If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $H \operatorname{prn} G$ for some $H \in \operatorname{Hall}_{\pi}(A)$.

Theorem 3 (Frattini Argument for Hall subgroups) If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $G = AN_G(H)$ for some $H \in Hall_{\pi}(A)$.

Compare these statements with their analogs for Sylow subgroups.

Theorem 1

If $G \in \mathcal{E}_{\pi}$ then H prn G for some $H \in \text{Hall}_{\pi}(G)$.

Theorem 2 If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $H \operatorname{prn} G$ for some $H \in \operatorname{Hall}_{\pi}(A)$.

Theorem 3 (Frattini Argument for Hall subgroups) If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $G = AN_G(H)$ for some $H \in Hall_{\pi}(A)$.

Compare these statements with their analogs for Sylow subgroups.

Corollary 1 to Sylow's Theorem If *G* is a group then *P* prn *G* for every $P \in Syl_p(G)$.

Corollary 2 to Sylow's Theorem If *G* is a group and $A \leq G$ then *P* prn *G* for every $P \in Syl_p(A)$.

Corollary 3 to Sylow's Theorem (Frattini Argument for Sylow subgroups)

If G is a group and $A \leq G$ then $G = AN_G(P)$ for every $P \in Syl_p(A)$.

Corollary 1 to Sylow's Theorem If *G* is a group then *P* prn *G* for every $P \in Syl_p(G)$.

Corollary 2 to Sylow's Theorem If G is a group and $A \leq G$ then P prn G for every $P \in Syl_p(A)$.

Corollary 3 to Sylow's Theorem (Frattini Argument for Sylow subgroups)

If G is a group and $A \leq G$ then $G = AN_G(P)$ for every $P \in Syl_p(A)$.

Theorem 1

If $G \in \mathcal{E}_{\pi}$ then H prn G for some $H \in \text{Hall}_{\pi}(G)$.

Theorem 2

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $H \operatorname{prn} G$ for some $H \in \operatorname{Hall}_{\pi}(A)$.

Theorem 3 (Frattini Argument for Hall subgroups)

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $G = AN_G(H)$ for some $H \in Hall_{\pi}(A)$.

Let $\pi \subseteq \mathbb{P}$ and $\mathcal{E}_{\pi} \neq \mathcal{C}_{\pi}$. Take $X \in \mathcal{E}_{\pi} \setminus \mathcal{C}_{\pi}$ and non-conjugate $U, V \in \mathsf{Hall}_{\pi}(X)$. Let $n \in \pi'$. Consider $Y = \underbrace{X \times X \times \cdots \times X \times X}_{X \times Y}$ n times and $\tau \in Aut(Y)$, where $\tau: (x_1, x_2, \dots, x_{n-1}, x_n) \mapsto (x_2, x_3, \dots, x_n, x_1)$ for all $x_1, x_2, \ldots, x_{n-1}, x_n \in X$. Let $G = Y \setminus \langle \tau \rangle \simeq X \wr \mathbb{Z}_n$. The subgroups $H=V\times\underbrace{U\times\cdots\times U\times U}_{},$ n-1 tim $K = \underbrace{U \times U \times \cdots \times U}_{\times V} \times V$ n-1 times of Y are π -Hall in Y and in G. Moreover, $H^{\tau} = K$.

Thus, in Theorems 1–3, one cannot replace "for some" with "for every".

Theorem 1 If $G \in \mathcal{E}_{\pi}$ then H prn G for some $H \in \text{Hall}_{\pi}(G)$.

Theorem 2 If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $H \operatorname{prn} G$ for some $H \in \operatorname{Hall}_{\pi}(A)$.

Theorem 3 (Frattini Argument for Hall subgroups) If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $G = AN_G(H)$ for some $H \in Hall_{\pi}(A)$.

Can one replace the condition $G \in \mathcal{E}_{\pi}$ in Theorems 2 and 3 with the weaker one $A \in \mathcal{E}_{\pi}$?

Theorem 1 If $G \in \mathcal{E}_{\pi}$ then H pro G for some $H \in \text{Hall}_{\pi}(G)$.

Theorem 2 If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $H \operatorname{prn} G$ for some $H \in \operatorname{Hall}_{\pi}(A)$.

Theorem 3 (Frattini Argument for Hall subgroups) If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $G = AN_G(H)$ for some $H \in Hall_{\pi}(A)$.

Can one replace the condition $G \in \mathcal{E}_{\pi}$ in Theorems 2 and 3 with the weaker one $A \in \mathcal{E}_{\pi}$? Let $\pi = \{2, 3\}$ and let $A = GL_3(2)$. Then A has exactly two classes of conjugate π -Hall subgroups with the representatives

$$U = \begin{pmatrix} \boxed{\operatorname{GL}_2(2)} * \\ 1 \end{bmatrix} \text{ and } V = \begin{pmatrix} \boxed{1} * \\ \operatorname{GL}_2(2) \end{bmatrix}$$

The first one consists of the line stabilizers in the natural representation of A, and the second one consists of the plane stabilizers.

Consider the automorphism $\iota : x \mapsto (x^t)^{-1}$, $x \in A$, of A (here x^t is the transpose of x). Then $|\iota| = 2$ and ι interchanges U^A and V^A .

Let $G = A \setminus \langle \iota \rangle$. Then $K^A \neq K^G$ for every $K \in \text{Hall}_{\pi}(A)$. In particular, K is non-pronormal in G and $G \neq AN_G(K)$.

Suppose, $H \in \text{Hall}_{\pi}(G)$. Then G = HA and G stabilizes $(H \cap A)^A$. But $(H \cap A)^A$ coincides either with U^A or with V^A , and hence G does not stabilize $(H \cap A)^A$. A contradiction.

Thus, $G \notin \mathcal{E}_{\pi}$.

Let $\pi = \{2, 3\}$ and let $A = GL_3(2)$. Then A has exactly two classes of conjugate π -Hall subgroups with the representatives

$$U = \begin{pmatrix} \boxed{\operatorname{GL}_2(2)} * \\ 1 \end{bmatrix} \text{ and } V = \begin{pmatrix} \boxed{1} * \\ \operatorname{GL}_2(2) \end{bmatrix}.$$

The first one consists of the line stabilizers in the natural representation of A, and the second one consists of the plane stabilizers.

Consider the automorphism $\iota : x \mapsto (x^t)^{-1}$, $x \in A$, of A (here x^t is the transpose of x). Then $|\iota| = 2$ and ι interchanges U^A and V^A .

Let $G = A \setminus \langle \iota \rangle$. Then $K^A \neq K^G$ for every $K \in \text{Hall}_{\pi}(A)$. In particular, K is non-pronormal in G and $G \neq AN_G(K)$.

Suppose, $H \in \text{Hall}_{\pi}(G)$. Then G = HA and G stabilizes $(H \cap A)^A$. But $(H \cap A)^A$ coincides either with U^A or with V^A , and hence G does not stabilize $(H \cap A)^A$. A contradiction.

Thus, $G \notin \mathcal{E}_{\pi}$.

Let $\pi = \{2, 3\}$ and let $A = GL_3(2)$. Then A has exactly two classes of conjugate π -Hall subgroups with the representatives

$$U = \begin{pmatrix} \boxed{\operatorname{GL}_2(2)} * \\ 1 \end{bmatrix} \text{ and } V = \begin{pmatrix} \boxed{1} * \\ \operatorname{GL}_2(2) \end{bmatrix}.$$

The first one consists of the line stabilizers in the natural representation of A, and the second one consists of the plane stabilizers.

Consider the automorphism $\iota : x \mapsto (x^t)^{-1}$, $x \in A$, of A (here x^t is the transpose of x). Then $|\iota| = 2$ and ι interchanges U^A and V^A .

Let $G = A \setminus \langle \iota \rangle$. Then $K^A \neq K^G$ for every $K \in \text{Hall}_{\pi}(A)$. In particular, K is non-pronormal in G and $G \neq AN_G(K)$.

Suppose, $H \in \text{Hall}_{\pi}(G)$. Then G = HA and G stabilizes $(H \cap A)^A$. But $(H \cap A)^A$ coincides either with U^A or with V^A , and hence G does not stabilize $(H \cap A)^A$. A contradiction.

Thus, $G \notin \mathcal{E}_{\pi}$.

Thus, in Theorems 2 and 3, one cannot replace " $G \in \mathcal{E}_{\pi}$ " with " $A \in \mathcal{E}_{\pi}$ ".

In our proof of this Theorem, we use the classification of finite simple groups and the classification of Hall subgroups in such groups.

If G is a finite group then we denote by $k_{\pi}(G)$ the number of classes of conjugate π -Hall subgroups of G.

Class Number Theorem (E.Vdovin and D.R., 2010, mod CFSG) Let $S \in \mathcal{E}_{\pi}$ be a finite simple group. Then the following statements hold:

• if $2 \notin \pi$, then $k_{\pi}(S) = 1$;

• if
$$3 \notin \pi$$
, then $k_{\pi}(S) \in \{1, 2\}$;

• if $2, 3 \in \pi$, then $k_{\pi}(S) \in \{1, 2, 3, 4, 9\}$.

In particular, $k_{\pi}(S)$ is a bounded π -number.

Furthermore, if $S \leq G$ then we denote by $k_{\pi}^{G}(S)$ the number of classes of conjugate π -Hall subgroups K of S such that $K = H \cap S$ for some $H \in \text{Hall}_{\pi}(G)$.

As a consequence of the Class Number Theorem, we have

CNT-Corollary

Let $G \in \mathcal{E}_{\pi}$ possess a unique minimal normal subgroup S and let S be a finite simple group. Then the following statements hold:

- if $2 \notin \pi$, then $k_{\pi}^{\mathsf{G}}(S) = 1$;
- *if* $3 \notin \pi$, *then* $k_{\pi}^{G}(S) \in \{1, 2\}$;
- if $2, 3 \in \pi$, then $k_{\pi}^{G}(S) \in \{1, 2, 3, 4, 9\}$.

In particular, $k_{\pi}^{G}(S)$ is a π -number.

If $G \in \mathcal{E}_{\pi}$ and $A \leq G$ then $H^G = H^A$ for some $H \in Hall_{\pi}(A)$.

Firstly, let A be the unique minimal normal subgroup of G and let A be simple.

Denote by Ω the set of classes of conjugate π -Hall subgroups K of S such that $K = H \cap A$ for some $H \in \text{Hall}_{\pi}(G)$. Then $|\Omega| = k_{\pi}^{G}(A)$ and G acts on Ω in a natural way. Consider

 $H \in \operatorname{Hall}_{\pi}(G)$ and $\mathcal{K} = (H \cap A)^A = \{H^a \cap A \mid a \in A\} \in \Omega$. Since $H \cap A \trianglelefteq H$, H leaves invariant \mathcal{K} , and hence $H \leqslant G_{\mathcal{K}}$. Thus, $|\mathcal{K}^G|$ divides |G : H| and $|\mathcal{K}^G|$ is a π' -number. On the other hand, $|\mathcal{K}^G| \le |\Omega| = k_{\pi}^G(A)$. In view of CNT-Corollary, one of the following statements holds:

• $|\mathcal{K}^{\mathsf{G}}|$ is a π -number;

• 2, $3 \in \pi$, $k_{\pi}^{G}(A) = 9$, and $|\mathcal{K}^{G}| \in \{5,7\}$. In the first case, $|\mathcal{K}^{G}| = 1$, i.e. $(H \cap A)^{A} = (H \cap A)^{G}$. In the second case, the power of every orbit \mathcal{L}^{G} of G on Ω that differs from \mathcal{K}^{G} is at most 4. Hence $|\mathcal{L}^{G}|$ is a π -number and $|\mathcal{L}^{G}| = 1$. Now consider the situation where A is a minimal normal subgroup (A is not necessarily simple and G does not necessarily have a unique minimal normal subgroup).

Definition

Suppose A, B, H are subgroups of G such that $B \leq A$. Then $N_H(A/B) = N_H(A) \cap N_H(B)$ is the *normalizer* of A/B in H. If $x \in N_H(A/B)$ then x induces an automorphism of A/B by $Ba \mapsto Bx^{-1}ax$.

Thus there exists a homomorphism $N_H(A/B) \to \operatorname{Aut}(A/B)$. The image of $N_H(A/B)$ under this homomorphism is denoted by $\operatorname{Aut}_H(A/B)$ and is called the group of *H*-induced automorphisms of A/B.

Theorem (F.Gross, 1986)

Let $1 = G_0 < G_1 < \ldots < G_n = G$ be a composition series for a finite group G which is a refinement of a chief series for G. If $\operatorname{Aut}_G(G_i/G_{i-1}) \in \mathcal{E}_{\pi}$ for all $i = 1, \ldots, n$, then $G \in \mathcal{E}_{\pi}$.

Theorem (E.Vdovin and D.R., 2011)

Let $1 = G_0 < G_1 < \ldots < G_n = G$ be a composition series for a finite group G. If $G \in \mathcal{E}_{\pi}$ then $\operatorname{Aut}_G(G_i/G_{i-1}) \in \mathcal{E}_{\pi}$ for all i.

In the considered situation, $A = S_1 \times \cdots \times S_n$, where S_i are simple and $S_i = S_1^{g_i}$ for some $g_i \in G$, i = 1, ..., n.

Then g_1, \ldots, g_n is a right transversal for $N_G(S_1)$ in G.

By the converse to Gross' Theorem, $\operatorname{Aut}_G(S_1) = N_G(S_1)/C_G(S_1) \in \mathcal{E}_{\pi}.$

By the above-considered case, $S_1 \cong \text{Inn}(S_1)$ includes an $\text{Aut}_G(S_1)$ -invariant conjugacy class \mathcal{K} of π -Hall subgroups.

Let $U \in \mathcal{K}$. Then

- $U^{g_i} \in \operatorname{Hall}_{\pi}(S_i)$,
- $V = \langle U^{g_i} \mid i = 1, ..., n \rangle \in \mathsf{Hall}_{\pi}(A)$, and

•
$$V^G = V^A$$
, i.e., $G = AN_G(V)$.

Now, one can investigate the general situation in Theorem 3 by using induction on |G|.

Theorem 1: In an \mathcal{E}_{π} -group G, H prn G for some $H \in \text{Hall}_{\pi}(G)$.

Theorem (E.Vdovin, D.R., 2012)

In the finite simple groups, the Hall subgroups are pronormal.

Thus, we can assume that G is not simple. Let A be a minimal normal subgroup of G. Then $A = S_1 \times \cdots \times S_n$, where S_i are simple. Moreover, $K \in \text{Hall}_{\pi}(A) \Rightarrow K \text{ prn } A$. By Theorem 1, $G = AN_G(K)$ for some $K \in \text{Hall}_{\pi}(A)$. By induction, $H/K \text{ prn } N_G(K)/K$ for some $H/K \in \text{Hall}_{\pi}(N_G(K)/K)$ and $H \in \text{Hall}_{\pi}(G)$. $H/K \text{ prn } N_G(K)/K \Rightarrow HA/A \text{ prn } AN_G(K)/A = G/A$.

Proposition

Let $H \in \operatorname{Hall}_{\pi}(G)$, $A \trianglelefteq G$, and

- *HA*/*H* prn *G*/*A*;
- $H \cap A \operatorname{prn} A;$
- $(H \cap A)^A = (H \cap A)^G$.

Then $H \operatorname{prn} G$.

Conjecture 1

Every Hall subgroup is pronormal in its normal closure.

If
$$H \in \operatorname{Hall}_{\pi}(G)$$
 then $\langle H^G \rangle = O^{\pi'}(G)$.

Conjecture 1'

If $H \in \operatorname{Hall}_{\pi}(G)$ and $\langle H^G \rangle = G$ then $H \operatorname{prn} G$.

A subgroup H of G is said to be *strongly pronormal* if K^g is conjugate to a subgroup of H in $\langle H, K^g \rangle$ for every $g \in G$ and $K \leq H$.

Conjecture 2

Every pronormal Hall subgroup is strongly pronormal.

Conjecture 3

Every \mathcal{E}_{π} -group contains a strongly pronormal π -Hall subgroup.

On \mathcal{E}_{π} -groups in which every π -Hall subgroup is pronormal In collaboration with Prof. Guo Wenbin By analogy with P.Hall's notation, we will say that a group Gsatisfies \mathcal{P}_{π} (is a \mathcal{P}_{π} -group, belongs to the class \mathcal{P}_{π}) if $G \in \mathcal{E}_{\pi}$ and every π -Hall subgroups in G is pronormal.

Theorem

 $\mathfrak{SX} = \{ G \mid G \text{ is isomorphic to a subgroup of } H \in \mathfrak{X} \};$ $Q\mathfrak{X} = \{G \mid G \text{ is an epimorphic image of } H \in \mathfrak{X}\};$ $S_n \mathfrak{X} = \{ G \mid G \text{ is isomorphic to a subnormal subgroup of } H \in \mathfrak{X} \}$ $\mathbf{R}_0 \mathfrak{X} = \{ G \mid \exists N_i \triangleleft G \ (i = 1, \dots, m) \text{ with } G/N_i \in \mathfrak{X} \text{ and } \}$ $\bigcap N_i = 1$; i=1 $N_0 \mathfrak{X} = \{ G \mid \exists N_i \trianglelefteq \trianglelefteq G \ (i = 1, ..., m) \text{ with } N_i \in \mathfrak{X} \text{ and } G = I \}$ $\langle N_1, \ldots, N_m \rangle$ $\mathbf{E}\mathfrak{X} = \{G \mid G \text{ possesses a series } 1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_m = G$ with $G_i/G_{i-1} \in \mathfrak{X} \ (i = 1, ..., m)$. If $\pi = \{3, 5\}$ then the classes $\mathcal{D}_{\pi}, \mathcal{C}_{\pi}, \mathcal{P}_{\pi}$, and \mathcal{E}_{π} are not

s-closed: $SL_2(16) \in \mathcal{D}_{\pi}$ while $SL_2(4) \cong Alt_5 \notin \mathcal{E}_{\pi}$.

b) A (B) b) A (B) b)

Table: Is it true that $C\mathfrak{X} = \mathfrak{X}$, $\mathfrak{X} \in \{\mathcal{D}_{\pi}, \mathcal{E}_{\pi}, \mathcal{C}_{\pi}, \mathcal{P}_{\pi}\}$?

С	\mathcal{D}_{π}	\mathcal{E}_{π}	\mathcal{C}_{π}	\mathcal{P}_{π}
S	no	no	no	no
Q	yes	yes	yes	yes
S _n	yes	yes	no	no
R ₀	yes	yes	yes	yes
N ₀	yes	no	yes	no
Е	yes	no	yes	no

Theorem (Wenbin Guo, D.R., mod CFSG)

The following statements hold:

(A) CP_π = P_π for every set π of primes and C ∈ {Q, R₀}.
(B) If C ∈ {S, S_n, N₀, E}, then CP_π ≠ P_π for a set π of primes.
(C) If C ∈ {S_n, E} and CP_π = P_π for a set π of primes then CE_π = E_π and CC_π = C_π.

Corollary (Wenbin Guo, D.R., mod CFSG)

Let $C \in \{S, Q, S_n, R_0, N_0, E\}$. Then the following statements are equivalent:

(1) $C\mathcal{P}_{\pi} = \mathcal{P}_{\pi}$ for every set π of primes;

(2) $C\mathcal{E}_{\pi} = \mathcal{E}_{\pi}$ and $C\mathcal{C}_{\pi} = \mathcal{C}_{\pi}$ for every set π of primes.

Corollary (Wenbin Guo, D.R., mod CFSG)

For a set π of primes, \mathcal{P}_{π} is a saturated formation.

Corollary (Wenbin Guo, D.R.)

There exist sets π (for example, $\pi = \{2, 3\}$) of primes such that \mathcal{P}_{π} is not a Fitting class.

Proposition (mod CFSG)

If $\mathcal{E}_{\pi} = \mathcal{C}_{\pi}$ and $C \in \{Q, S_n, R_0, N_0, E\}$ then $C\mathcal{P}_{\pi} = \mathcal{P}_{\pi}$. In particular, \mathcal{P}_{π} is a Fitting class.

Thank you for your attention!

Danila O. Revin Hall subgroups and the pronormality