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Strictly positive modal formulas

The language of modal logic extends that propositional calculus by
a family of unary connectives {3i : i ∈ I}.

Strictly positive modal formulas are defined by the grammar:

A ::= p | > | (A ∧ B) | 3iA, i ∈ I .

We are interested in the implications A→ B where A and B are
strictly positive.



Strictly positive logics

Strictly positive fragment of a modal logic L is the set of all
implications A→ B such that A and B are strictly positive
and L ` A→ B.

Strictly positive logics are consequence relations on the set of
strictly positive modal formulas.
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Sources of interest

The interest towards strictly positive (fragments of) modal logics
independently emerged around 2010 in two different disciplines:

The work on proof-theoretic applications of provability logic
by Beklemishev, Dashkov, et al.;

The work on description logic by Zakharyaschev, Kurucz, et al.
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Advantages

Strictly positive fragment of a modal logic is (in the
considered cases) much simpler than the original logic.

Typically, strictly positive fragments of standard modal logics
are polytime decidable.

On the other hand, the language is sufficiently expressive:

Main applications of provability logic to the analysis of
arithmetical theories can be stated in terms of strictly positive
logics.

Strictly positive logics allow for alternative arithmetical
interpretations that are quite natural from a proof-theoretic
point of view.
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Provability logic

S a gödelian theory (r.e. theory containing enough arithmetic)

2S(x) provability predicate in S

σ a substitution of S-sentences for propositional variables

ϕ 7−→ ϕσ arithmetical translation of ϕ under σ
(2ϕ)σ = 2S(pϕσq).

Def. PL(S) := {ϕ : ∀σ S ` ϕσ} the provability logic of S .

Th. (Solovay 76) PL(S) = GL if N � S .
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Gödel–Löb Logic GL

Axioms of GL:

Tautologies;

2(ϕ→ ψ)→ (2ϕ→ 2ψ);

2(2ϕ→ ϕ)→ 2ϕ.

Rules: modus ponens, ϕ/2ϕ.

GL enjoys the finite model property, Craig interpolation, a cut-free
sequent calculus.
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Shift of emphasis

From arithmetical completeness results to other types of questions:

stronger provability-like concepts (reflection principles);

ordinal notation systems as modal algebras;

variable-free fragments and normal forms.
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Reflection principles

Emerged in the 1930s in the work of Rosser, Kleene and Turing.
Later (in the 1960s) it was taken up by Kreisel, Levy, Feferman
and others.

Cf. G. Kreisel and A. Levy (1968): Reflection principles and their
use for establishing the complexity of axiomatic systems.



Reflection principles

Notation:

2S(ϕ) ‘ϕ is provable in S’

Trn(σ) ‘σ is the Gödel number of a true Σn-sentence’

Restricted reflection principles:

R0(S) Con(S)

Rn(S) ∀σ ∈ Σn (2Sσ → Trn(σ)), for n ≥ 1.

Rn(S) can be seen as a relativization of the consistency assertion:
Rn(S) ⇐⇒ Con(S + all true Πn-sentences)
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Unrestricted reflection

Uniform reflection: Rω(S) := {Rn(S) : n ∈ ω}.
{∀x (2Sϕ(ẋ)→ ϕ(x)) : ϕ(x) any arithmetical formula}

Local reflection:

{2Sϕ→ ϕ : ϕ any arithmetical sentence}

Neither of the two schemata is finitely axiomatizable. Rω(S) is not
contained in any consistent extension of S of bounded arithmetical
complexity.
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Reflection algebra of S

Let LS be the Lindenbaum–Tarski boolean algebra of S sentences.

Each Rn correctly defines an operator on the equivalence
classes of LS : 〈n〉 : [ϕ] 7−→ [Rn(S + ϕ)].

The algebra (LS , 〈0〉, 〈1〉, . . . ) is the reflection algebra of S .

Identities of this algebra are axiomatized by the polymodal
provability logic GLP due to Japaridze.
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GLP: a Hilbert-style calculus

Basic symbols are now [n], for each n ∈ ω, and 〈n〉 is treated as an
abbreviation: 〈n〉ϕ = ¬[n]¬ϕ.

1 Tautologies;

2 [n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ);

3 [n]([n]ϕ→ ϕ)→ [n]ϕ;

4 [n]ϕ→ [n + 1]ϕ;

5 〈n〉ϕ→ [n + 1]〈n〉ϕ

Rules: modus ponens, ϕ ` [n]ϕ.

Th. (Japaridze, 1986) GLP ` ϕ(~x) iff LS � ∀~x (ϕ(~x) = 1),
provided N � S .
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Reflection calculus RC

Language: α ::= > | p | (α1 ∧ α2) | nα n ∈ ω
Example: α = 3(2p ∧ 32>), or shortly: 3(2p ∧ 32).

Sequents: α ` β.

RC rules:

1 α ` α; α ` >; if α ` β and β ` γ then α ` γ;

2 α ∧ β ` α, β; if α ` β and α ` γ then α ` β ∧ γ;

3 nnα ` nα; if α ` β then nα ` nβ;

4 nα ` mα for n > m;

5 nα ∧mβ ` n(α ∧mβ) for n > m.

Ex. 3 ∧ 23 ` 3(> ∧ 23) ` 323.
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Interpretation of RC in GLP

RC can be seen as a strictly positive fragment of GLP.

Interpretation: 3(2p ∧ 32>) 7→ 〈3〉(〈2〉p ∧ 〈3〉〈2〉>)

Theorems (E. Dashkov).

1 GLP is a conservative extension of RC;

2 RC is polytime decidable;

3 RC enjoys the finite model property.



RC 0 as an ordinal notation system

Let RC 0 denote the variable-free fragment of RC.
Let W denote the set of all RC 0-formulas. For α, β ∈W define:

α ∼ β if α ` β and β ` α in RC0;

α <n β if β ` nα.

Theorem.

1 Every α ∈W is equivalent to a word (formula without ∧);

2 (W /∼, <0) is isomorphic to (ε0, <).

Rem. ε0 = sup{ω, ωω, ωωω
, . . . } is the characteristic ordinal of

Peano arithmetic.



The system RCω

The language of RC is extended by a new modality symbol ω. The
rules of RCω are:

The rules of RC stated for all n ≤ ω;

ωα ` α.

The intended interpretation of ω is Rω. Hence, the strictly positive
modal formulas should now be understood as (possibly infinite)
sets of arithmetical sentences.



Axiom ωα ` α

Modal logically, this schema means 3A→ A, i.e., A→ 2A.

Notice that in the context of classical modal logic the
principle A→ 2A only has trivial (discrete) Kripke frames.

Not so in the strictly positive logic! The same principle also
plays a certain role in intuitionistic modal logic.



Axiom ωα ` α

Modal logically, this schema means 3A→ A, i.e., A→ 2A.

Notice that in the context of classical modal logic the
principle A→ 2A only has trivial (discrete) Kripke frames.

Not so in the strictly positive logic! The same principle also
plays a certain role in intuitionistic modal logic.



Axiom ωα ` α

Modal logically, this schema means 3A→ A, i.e., A→ 2A.

Notice that in the context of classical modal logic the
principle A→ 2A only has trivial (discrete) Kripke frames.

Not so in the strictly positive logic! The same principle also
plays a certain role in intuitionistic modal logic.



Arithmetical interpretation of RCω

Let S be a gödelian theory.

An arithmetical substitution σ assigns to each variable a
gödelian theory extending S (i.e. a primitive recursive set of
sentences together with a p.r. formula defining this set).

Interpretation ασ of a strictly positive formula α in S :

>σ = ∅; (α ∧ β)σ = (ασ ∪ βσ);
(nα)σ = {Rn(S + ασ)};
(ωα)σ = Rω(S + ασ).



Arithmetical completeness

Suppose N � S .
Theorem 1. α ` β in RCω iff ∀σ S + ασ ` βσ.

Theorem 2. RCω enjoys the finite model property and is polytime
decidable.
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Example

A simple Kripke model shows that

ωp ∧ ωq 0RCω ω(p ∧ q).

By Theorem 1, there are arithmetical theories P,Q such that

S + Rω(P) + Rω(Q) 0 Rω(P + Q).

It is easy to see that any such pair must have unrestricted
arithmetical complexity over S .



RC 0ω as an ordinal notation system

Let RC 0ω denote the variable-free fragment of RCω.
Let Wω denote the set of all RC 0ω-formulas.

Theorem 3. In RC 0ω,

1 Every α ∈Wω is equivalent to a word (formula without ∧);

2 (Wω/∼, <0) is isomorphic to (εω, <).

Here εω is the ω-th ordinal α such that ωα = α.



Open questions

Study systematically strictly positive normal logics (s.p.l.).
State general sufficient conditions guaranteeing nice semantic
properties of such logics.

Characterize strictly positive fragments of standard polymodal
logics by positive calculi. (Some preliminary work done by
Dashkov, Kaniskin and more to come.)

Study the complexity of s.p.l.. (Need not always be polytime
decidable or even decidable.)

Study the analogy between s.p.l. and semi-Thue systems.

Positive Craig interpolation?
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