On interpolation in n-transitive modal logics

Anastasia Karpenko

Novosibirsk State University, Novosibirsk, Russia

Maltsev Meeting 2013 Novosibirsk, Russia November, 15

(周) (三) (三)

The minimal modal logic K is determined by a set of its axioms and rules of inference:

Axioms:

1. All the tautologies of the classical two-valued logic;

2.
$$\Box(p \to q) \to (\Box p \to \Box q), \ \Diamond p \equiv \neg \Box \neg p.$$

Rules of inference:

R1.
$$\frac{A, (A \rightarrow B)}{B}$$
 (modus ponens);
R2. $\frac{A}{\Box A}$ (necessitation rule);

R3. Substitution (of formulas for variables).

<日本

<</p>

We use standard denotation for some members of NE(K):

$$K^{n} = [n]p \rightarrow \Box^{n+1}p, \text{ where } [n]p = p\&\Box p\&\ldots\&\Box^{n}p$$

$$wK4 = K + ((p\&\Box p) \rightarrow \Box\Box p);$$

$$K4 = K + (\Box p \rightarrow \Box\Box p);$$

$$DL = wK4 + (p \rightarrow \Box\Diamond p);$$

$$S4 = K4 + (\Box p \rightarrow p);$$

$$S5 = S4 + (p \rightarrow \Box\Diamond p).$$

<ロ> (四) (四) (三) (三) (三)

If **p** is a list of propositional variables, let $A(\mathbf{p})$ denote a formula whose all variables are in **p**. Suppose that $\mathbf{p}, \mathbf{q}, \mathbf{r}$ are disjoint lists of propositional variables.

CIP: If $\vdash_L A(\mathbf{p}, \mathbf{q}) \to B(\mathbf{p}, \mathbf{r})$, then there exist a formula $C(\mathbf{p})$ such that $\vdash_L A(\mathbf{p}, \mathbf{q}) \to C(\mathbf{p})$ and $\vdash_L C(\mathbf{p}) \to B(\mathbf{p}, \mathbf{r})$.

IPD: If $A(\mathbf{p}, \mathbf{q}) \vdash_L B(\mathbf{p}, \mathbf{r})$, then there exist a formula $C(\mathbf{p})$ such that $A(\mathbf{p}, \mathbf{q}) \vdash_L C(\mathbf{p})$ and $C(\mathbf{p}) \vdash_L B(\mathbf{p}, \mathbf{r})$.

WIP: If $A(\mathbf{p}, \mathbf{q})$, $B(\mathbf{p}, \mathbf{r}) \vdash_L \bot$, then there exist a formula $C(\mathbf{p})$ such that $A(\mathbf{p}, \mathbf{q}) \vdash_L C(\mathbf{p})$ and $C(\mathbf{p})$, $B(\mathbf{p}, r) \vdash_L \bot$.

- $CIP \Rightarrow IPD \Rightarrow WIP$ (in normal modal logics reverse arrow fail)
- L. Maksimova: CIP, IPD and WIP are equivalent over S5.
- L. Maksimova: CIP and IPD are decidable over S4.
- A. Chagrov: CIP and IPD are undecidable over K4.
- **A.** Karpenko: *WIP* is decidable over *K*4.

・ 同 ト ・ ヨ ト ・ ヨ ト

Larisa L. Maksimova proved that *IPD* is equivalent to amalgamation of correspondence varieties of modal algebras.

For a given logic L, its associated variety $V(L) = \{\mathfrak{A} \mid \mathfrak{A} \models L\}$. It is known that $L = \{A \mid (\forall \mathfrak{A} \in V(L))(\mathfrak{A} \models A)\}$. For every class K of modal algebras the set $L(K) = \{A \mid (\forall \mathfrak{A} \in K)(\mathfrak{A} \models A)\}$ is a modal logic.

A class V has the *amalgamation property* if it satisfies the following condition:

AP: For any $\mathfrak{B}, \mathfrak{C} \in V$ with a common subalgebra \mathfrak{A} , there exist an algebra \mathfrak{D} in V and monomorphisms $\delta : \mathfrak{B} \to \mathfrak{D}$ and $\varepsilon : \mathfrak{C} \to \mathfrak{D}$ such that $\delta(x) = \varepsilon(x)$ for all $x \in \mathcal{A}$.

A modal algebra is an algebra $\mathfrak{A} = (|\mathfrak{A}|, \rightarrow, \bot, \Box)$ which satisfies the identities of Boolean algebras for \rightarrow and \bot and, moreover, the conditions $\Box \top = \top$, where $\top = \bot \rightarrow \bot$, and $\Box(x \rightarrow y) \leq \Box x \rightarrow \Box y$.

A modal algebra \mathfrak{A} is *weak transitive or wK4-algebra* if it satisfies $x\&\Box x \leq \Box\Box x$.

A modal algebra \mathfrak{A} is *n*-transitive if it satisfies $[n]x \leq \Box^{n+1}x$, where $[n]x = x\&\Box x\&\ldots\&\Box^n x$.

A weak transitive modal algebra is called *DL-algebra* if it satisfies $x \leq \Box \Diamond x$, where $\Diamond x = \neg \Box \neg x$.

э

Theorem [Maksimova] : For any normal modal logic *L* the following are equivalent:

- 1. L has IPD;
- 2. the variety V(L) has AP;
- 3. for a given finitely generated finitely indecomposable algebras $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ in V(L) and monomorphisms $\beta : \mathfrak{A} \to \mathfrak{B}$ and $\gamma : \mathfrak{A} \to \mathfrak{C}$ there exist an algebra \mathfrak{D} in V(L) and monomorphisms $\delta : \mathfrak{B} \to \mathfrak{D}, \varepsilon : \mathfrak{C} \to \mathfrak{D}$, with $\delta\beta = \varepsilon\gamma$.

Theorem [Maksimova] : For any normal modal logic L the following are equivalent:

- 1. L has WIP;
- 2. the class Sim(V(L)) of simple algebras of V(L) has AP;
- 3. the class FG(Sim(V(L))) of finitely generated and simple algebras of V(L) has AP.

An algebra is said to be *simple* if it has exactly two congruences.

Theorem [Karpenko, Maksimova 2010] : A weak transitive algebra \mathfrak{A} is simple iff for all x in $\mathfrak{A} \times \& \Box x = \boxdot x = \begin{cases} 1, & \text{if } x = 1; \\ 0, & \text{if } x \neq 1. \end{cases}$

Theorem [Karpenko, Maksimova 2010]: Every simple weak transitive algebra is *DL*-algebra.

<日本

<</p>

By V_n^m we denote a modal algebra with (n + m) atoms a_1, \ldots, a_n , b_1, \ldots, b_m such that, for every atom x:

$$\Diamond x = \begin{cases} 1, & x = a_i & \text{for some } 1 \le i \le n; \\ \neg x, & x = b_j & \text{for some } 1 \le j \le m; \end{cases}$$

Theorem [Karpenko, Maksimova 2010]: Every finitely generated finitely indecomposable *DL*-algebra is simple and isomorphic to the algebra V_n^m for the suitable n + m > 0.

For an arbitrary finite *DL*-algebras \mathfrak{A} and \mathfrak{B} , $\mathfrak{A} \preceq \mathfrak{B}$ denotes that \mathfrak{A} is isomorphically embedded into \mathfrak{B} .

Theorem [Karpenko, Maksimova 2010]: The relation \leq is a reflexive and transitive closure of the relation

$$V_n^m \leq V_{n+1}^m, V_n^m \leq V_n^{m+1}, V_n^m \leq V_{n-1}^{m+2},$$

for $m \ge 0, n \ge 1$.

<日本

<</p>

System of embedding

æ

イロト イポト イヨト イヨト

By K(DL) we denote a class of all algebras V_n^m where n + m > 0.

The class K is called *closed downward* if for any algebra $\mathfrak{A} \in K$ the following condition $(\mathfrak{B} \preceq \mathfrak{A} \Rightarrow \mathfrak{A} \in K)$ is valid.

Theorem [2010]: There is a one to one correspondence between varieties of DL-algebras and subclasses of K(DL) closed downward.

<日本

<</p>

Theorem [2010]: There are exactly 16 amalgamable varieties of DL-algebras, the corresponding subclasses of K(DL) are the following:

- 1. empty;
- 2. generated by V_0^1 ;
- 3. generated by V_1^0 ;
- 4. generated by V_1^0 and V_0^1 ;
- 5. generated by V_0^2 ;
- 6. generated by V_0^2 and V_0^1 ;

7. generated by V_1^1 ; 8. generated by V_1^1 and V_0^1 ; 9. generated by V_2^0 ; 10. generated by V_2^0 and V_0^1 ; 11. generated by V_0^3 ; 12. generated by V_0^3 and V_0^1 ; 13. generated by V_0^4 ; 14. generated by V_0^4 and V_0^1 ; 15. generated by all algebras V_n^0 (n > 0); 16. generated by all algebras V_n^0 (n > 0) and V_0^1 . Theorem [2010]: WIP and IPD are equivalent over DL.

Theorem [2010]: There are exactly 16 logics with IPD in NE(DL).

Theorem [2010]: The logic $L \in NE(wK4)$ has *WIP* iff the logic $L + (A \rightarrow \Box \Diamond A)$ has *WIP*.

For a given $x \in AtV_n^m = \{a_1, \ldots, a_n, b_1, \ldots, b_m\}$ we associate some variable p_x . The following formula $\theta(V_n^m)$ have the same properties with Characteristic formula:

$$\theta(V_n^m) = \left(\left(\left(\bigotimes_{\substack{x, y \in AtV_n^m \\ x \neq y}} \boxdot \neg (p_x \& p_y) \right) \& \boxdot \left(\bigvee_{x \in AtV_n^m} p_x \right) \& \right. \\ \left. \& \bigotimes_{x \in \{a_1, \dots, a_n\}} \boxdot \Diamond p_x \& \bigotimes_{x \in \{b_1, \dots, b_m\}} \boxdot \left(\Diamond p_x \leftrightarrow \neg p_x \right) \right) \right) \to 0 \right)$$
(1)

Axiomatization of extensions of DL with IPD

Theorem [2012]: Following extensions of *DL* and only they have *IPD*:

1.
$$(For)' = DL + \theta(V_1^0)$$
; $For = (For)' + \theta(V_0^1)$;
2. $(LV_1^0)' = DL + \theta(V_0^2) + \theta(V_1^1) + \theta(V_2^0)$;
 $LV_1^0 = (LV_1^0)' + \theta(V_0^1)$;
3. $(LV_0^2)' = DL + \theta(V_1^1) + \theta(V_2^0)$; $LV_0^2 = (LV_0^2)' + \theta(V_0^1)$;
4. $(LV_1^1)' = DL + \theta(V_2^0) + \theta(V_0^2) + \theta(V_0^3)$;
 $LV_1^1 = (LV_1^1)' + \theta(V_0^1)$;
5. $(LV_2^0)' = DL + \theta(V_3^0) + \theta(V_1^1) + \theta(V_0^2)$,
 $LV_2^0 = (LV_2^0)' + \theta(V_0^1)$;
6. $(LV_0^3)' = DL + \theta(V_0^2) + \theta(V_2^0)$; $LV_0^3 = (LV_0^3)' + \theta(V_0^1)$;
7. $(LV_0^4)' = DL + \theta(V_0^2) + \theta(V_0^3) + \theta(V_3^0) + \theta(V_2^1)$;
 $LV_0^4 = (LV_0^4)' + \theta(V_0^1)$;
8. $(S5)' = DL + \theta(V_0^2) + \theta(V_1^1)$; $S5 = (S5)' + \theta(V_0^1)$.

Theorem [2012]: The deductive interpolation property is decidable over *DL*.

Theorem [2012]: The amalgamation property is decidable for varieties of *DL*-algebras.

Theorem [2012]: The weak interpolation property is decidable over wK4.

From the paper of L. Maksimova [1980] follows that the logics $(LV_1^1)'$ and (LV_1^1) does not have the CIP.

The question about the number of extensions of DL with CIP is still open.

(4月) (1日) (日)

Does the class of finitely generated and simple n-transitive modal algebras have the amalgamation property?

Does the n-transitive modal logic have the WIP?

(周) (三) (三)

э

Theorem 1: A n-transitive algebra \mathfrak{A} is simple iff for all x in \mathfrak{A} [n]x = $\begin{cases} 1, & \text{if } x = 1; \\ 0, & \text{if } x \neq 1. \end{cases}$

Lemma 1: If the formula $[n]A \to \Box^{n+1}A$ is valid in a Kripke frame, then the frame satisfies the condition $\forall u \forall v (uR^{n+1}v \Rightarrow (u = v \text{ or } \exists k : k \leq n \text{ and } uR^kv)).$

The frames which identify the condition of Lemma 1 we will call n-transitive.

(4月) (1日) (日)

Let $\mathcal{W} = \langle W, R \rangle$ be a given frame. Denote by \mathcal{W}^+ the power-set of \mathcal{W} and let $\mathfrak{W}^+ = (W^+, \rightarrow, \bot, \Box)$ where $\bot = \emptyset, X \rightarrow Y = (W - X) \cup Y), \Box X = \{x \in |\forall y (xRy \Rightarrow y \in X)\}$ for all $X, Y \subseteq W$. Then \mathfrak{W}^+ is a modal algebra.

Let $\mathfrak{A} = (|\mathfrak{A}|, \rightarrow, \bot, \Box)$ be a modal algebra, $W(\mathfrak{A})$ the set of it ultrafilters, $R(\mathfrak{A})$ a relation on $\mathfrak{A} = (|\mathfrak{A}|, \rightarrow, \bot, \Box)$ defined as follows: $\Phi R(\mathfrak{A})\Psi$ iff $\forall x (\Box x \in \Phi \Rightarrow x \in \Psi)$. Let $\mathfrak{W}(A) = (W(\mathfrak{A}), R(\mathfrak{A}))$.

Representation theorem of Jonsson and Tarski [1951]: For each modal algebra \mathfrak{A} , the mapping $\varphi(x) = \{\Phi \in W(\mathfrak{A}) | x \in \Phi\}$, is a monomorphism from \mathfrak{A} into $\mathfrak{W}^+(A)$. Moreover, if A is finite, φ is an isomorphism onto $\mathfrak{W}^+(A)$.

э

For each finite modal algebra \mathfrak{A} the frame $\mathfrak{W}(A)$ may be replaced by the frame $At(\mathfrak{A})$ of all atoms of \mathfrak{A} , where a relation R is defined by $aRb \Leftrightarrow a \leq \Diamond b$ for all a, b in $At(\mathfrak{A})$.

Following [Karpenko, Maksimova, 2010] we denote the frame $\mathcal{X}_n^m = \langle X_n^m, R \rangle$, where $X_n^m = \{a_1, \ldots, a_n, b_1, \ldots, b_m\}$ and

$$(uRv \Leftrightarrow (u \neq v \text{ or } u = a_i \text{ for some } 1 \leq i \leq n))$$

which is isomorphic to the frame of atoms $At(V_n^m)$.

For a given finite algebras \mathfrak{A}_1 and \mathfrak{A}_2 the condition $\mathfrak{A}_1 \leq \mathfrak{A}_2$ is equivalent for the existence of p-morphism from $At(\mathfrak{A}_2)$ onto $At(\mathfrak{A}_1)$.

Lemma 2: Let F be a frame and $\theta_1 : F \to \mathcal{X}_0^2$ and $\theta_2 : F \to \mathcal{X}_0^3$ are p-morphisms. Then the frame F is not 2-transitive.

Corollary 2: The class of finitely generated, finite and simple 2-transitive modal algebras dose not have AP.

- 同下 - 三下 - 三下

By CV^n we denote a modal algebra with atoms b_1, \ldots, b_n such that $\Diamond b_n = b_1, \Diamond b_i = b_{i+1}$ for $1 \le i \le n-1$.

By the Lemma 1 CV^n is simple n-transitive modal algebra.

By \mathcal{CV}^n we denotes the correspondence frame $< At(CV^n), R(CV^n) >$.

Results

Lemma 3: Let F be a frame and $\theta : F \to CV^n$ be a mapping. Then θ is a p-morphism iff the following condition holds:

1.
$$\forall x, y \in \theta^{-1}(c_i)$$
 dose not hold (xRy) for all $i \in \{1, \ldots, n\}$;

2.
$$\forall x \in \theta^{-1}(c_i) \exists y \in \theta^{-1}(c_{i+1})$$
 such that xRy for all $\forall i \in \{1, \dots, n-1\};$

3.
$$\forall x \in \theta^{-1}(c_n) \exists y \in \theta^{-1}(c_1) \text{ such that } xRy;$$

4.
$$\forall x \in \theta^{-1}(c_i) \forall y \in \theta^{-1}(c_k) (\neg c_i R c_k \Rightarrow \neg x R y).$$

Lemma 4: Let F be a frame and $\theta_1 : F \to CV^n$ and $\theta_2 : F \to CV^{n-1}$ are p-morphisms. Then the frame F is not n-transitive (n \geq 3).

Theorem: The class of finitely generated, finite and simple n-transitive modal algebras does not have AP.

(D) (A) (A) (A)

Thank you for your attention.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ