On interpolation in n-transitive modal logics

Anastasia Karpenko

Novosibirsk State University, Novosibirsk, Russia

Maltsev Meeting 2013
Novosibirsk, Russia
November, 15

The minimal modal logic K

The minimal modal logic K is determined by a set of its axioms and rules of inference:
Axioms:

1. All the tautologies of the classical two-valued logic;
2. $\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q), \diamond p \equiv \neg \square \neg p$.

Rules of inference:
R1. $\frac{A,(A \rightarrow B)}{B}$ (modus ponens);
R2. $\frac{A}{\square A}$ (necessitation rule);
R3. Substitution (of formulas for variables).

Normal modal logics

We use standard denotation for some members of $N E(K)$:

$$
\begin{aligned}
& K^{n}=[n] p \rightarrow \square^{n+1} p, \text { where }[n] p=p \& \square p \& \ldots \& \square^{n} p . \\
& w K 4=K+((p \& \square p) \rightarrow \square \square p) ; \\
& K 4=K+(\square p \rightarrow \square \square p) ; \\
& D L=w K 4+(p \rightarrow \square \diamond p) ; \\
& S 4=K 4+(\square p \rightarrow p) ; \\
& S 5=S 4+(p \rightarrow \square \diamond p) .
\end{aligned}
$$

Interpolation properties

If \mathbf{p} is a list of propositional variables, let $A(\mathbf{p})$ denote a formula whose all variables are in \mathbf{p}. Suppose that $\mathbf{p}, \mathbf{q}, \mathbf{r}$ are disjoint lists of propositional variables.

CIP: If $\vdash_{L} A(\mathbf{p}, \mathbf{q}) \rightarrow B(\mathbf{p}, \mathbf{r})$, then there exist a formula $C(\mathbf{p})$ such that $\vdash_{L} A(\mathbf{p}, \mathbf{q}) \rightarrow C(\mathbf{p})$ and $\vdash_{L} C(\mathbf{p}) \rightarrow B(\mathbf{p}, r)$.

IPD: If $A(\mathbf{p}, \mathbf{q}) \vdash_{L} B(\mathbf{p}, \mathbf{r})$, then there exist a formula $C(\mathbf{p})$ such that $A(\mathbf{p}, \mathbf{q}) \vdash_{L} C(\mathbf{p})$ and $C(\mathbf{p}) \vdash_{L} B(\mathbf{p}, \mathbf{r})$.

WIP: If $A(\mathbf{p}, \mathbf{q}), B(\mathbf{p}, \mathbf{r}) \vdash_{L} \perp$, then there exist a formula $C(\mathbf{p})$ such that $A(\mathbf{p}, \mathbf{q}) \vdash_{L} C(\mathbf{p})$ and $C(\mathbf{p}), B(\mathbf{p}, r) \vdash_{L} \perp$.

Facts

$C I P \Rightarrow I P D \Rightarrow$ WIP (in normal modal logics reverse arrow fail)
L. Maksimova: CIP, IPD and WIP are equivalent over S5.
L. Maksimova: CIP and IPD are decidable over S4.
A. Chagrov: CIP and IPD are undecidable over $K 4$.
A. Karpenko: WIP is decidable over K4.

Facts

Larisa L. Maksimova proved that IPD is equivalent to amalgamation of correspondence varieties of modal algebras.

For a given logic L, its associated variety $V(L)=\{\mathfrak{A} \mid \mathfrak{A} \vDash L\}$. It is known that $L=\{A \mid(\forall \mathfrak{A} \in V(L))(\mathfrak{A} \vDash A)\}$. For every class K of modal algebras the set $L(K)=\{A \mid(\forall \mathfrak{A} \in K)(\mathfrak{A} \vDash A)\}$ is a modal logic.

A class V has the amalgamation property if it satisfies the following condition:

AP: For any $\mathfrak{B}, \mathfrak{C} \in V$ with a common subalgebra \mathfrak{A}, there exist an algebra \mathfrak{D} in V and monomorphisms $\delta: \mathfrak{B} \rightarrow \mathfrak{D}$ and $\varepsilon: \mathfrak{C} \rightarrow \mathfrak{D}$ such that $\delta(x)=\varepsilon(x)$ for all $x \in \mathcal{A}$.

Modal algebras

A modal algebra is an algebra $\mathfrak{A}=(|\mathfrak{A}|, \rightarrow, \perp, \square)$ which satisfies the identities of Boolean algebras for \rightarrow and \perp and, moreover, the conditions $\square \top=\top$, where $\top=\perp \rightarrow \perp$, and $\square(x \rightarrow y) \leq \square x \rightarrow \square y$.

A modal algebra \mathfrak{A} is weak transitive or wK4-algebra if it satisfies $x \& \square x \leq \square \square x$.

A modal algebra \mathfrak{A} is n-transitive if it satisfies $[n] x \leq \square^{n+1} x$, where $[n] x=x \& \square x \& \ldots \& \square^{n} x$.

A weak transitive modal algebra is called DL-algebra if it satisfies $x \leq \square \diamond x$, where $\diamond x=\neg \square \neg x$.

Important theorems

Theorem [Maksimova] : For any normal modal logic L the following are equivalent:

1. L has IPD;
2. the variety $V(L)$ has $A P$;
3. for a given finitely generated finitely indecomposable algebras $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}$ in $V(L)$ and monomorphisms $\beta: \mathfrak{A} \rightarrow \mathfrak{B}$ and $\gamma: \mathfrak{A} \rightarrow \mathfrak{C}$ there exist an algebra \mathfrak{D} in $V(L)$ and monomorphisms $\delta: \mathfrak{B} \rightarrow \mathfrak{D}, \varepsilon: \mathfrak{C} \rightarrow \mathfrak{D}$, with $\delta \beta=\varepsilon \gamma$.

Theorem [Maksimova] : For any normal modal logic L the following are equivalent:

1. L has WIP;
2. the class $\operatorname{Sim}(V(L))$ of simple algebras of $V(L)$ has AP;
3. the class $F G(\operatorname{Sim}(V(L)))$ of finitely generated and simple algebras of $V(L)$ has AP.

Simple wK4 algebras

An algebra is said to be simple if it has exactly two congruences.
Theorem [Karpenko, Maksimova 2010] : A weak transitive algebra \mathfrak{A} is simple iff for all x in $\mathfrak{A} x \& \square x=\square x= \begin{cases}1, & \text { if } x=1 ; \\ 0, & \text { if } x \neq 1 .\end{cases}$

Theorem [Karpenko, Maksimova 2010]: Every simple weak transitive algebra is $D L$-algebra.

V_{n}^{m} algebras

By V_{n}^{m} we denote a modal algebra with $(n+m)$ atoms a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} such that, for every atom x :

$$
\diamond x=\left\{\begin{array}{cc}
1, & x=a_{i} \\
\neg x, & \text { for some } 1 \leq i \leq n \\
\neg b_{j} & \text { for some } 1 \leq j \leq m
\end{array}\right.
$$

Theorem [Karpenko, Maksimova 2010]: Every finitely generated finitely indecomposable $D L$-algebra is simple and isomorphic to the algebra V_{n}^{m} for the suitable $n+m>0$.

System of embedding

For an arbitrary finite $D L$-algebras \mathfrak{A} and $\mathfrak{B}, \mathfrak{A} \preceq \mathfrak{B}$ denotes that \mathfrak{A} is isomorphically embedded into \mathfrak{B}.

Theorem [Karpenko, Maksimova 2010]: The relation \preceq is a reflexive and transitive closure of the relation

$$
V_{n}^{m} \preceq V_{n+1}^{m}, V_{n}^{m} \preceq V_{n}^{m+1}, V_{n}^{m} \preceq V_{n-1}^{m+2},
$$

for $m \geq 0, n \geq 1$.

System of embedding

One to one correspondence

By $K(D L)$ we denote a class of all algebras V_{n}^{m} where $n+m>0$.
The class K is called closed downward if for any algebra $\mathfrak{A} \in K$ the following condition ($\mathfrak{B} \preceq \mathfrak{A} \Rightarrow \mathfrak{A} \in K$) is valid.

Theorem [2010]: There is a one to one correspondence between varieties of $D L$-algebras and subclasses of $K(D L)$ closed downward.

Amalgamable varieties of DL-algebras

Theorem [2010]: There are exactly 16 amalgamable varieties of $D L$-algebras, the corresponding subclasses of $K(D L)$ are the following:

1. empty;
2. generated by V_{0}^{1};
3. generated by V_{1}^{0};
4. generated by V_{1}^{0} and V_{0}^{1};
5. generated by V_{0}^{2};
6. generated by V_{0}^{2} and V_{0}^{1};
7. generated by V_{1}^{1};
8. generated by V_{1}^{1} and V_{0}^{1};
9. generated by V_{2}^{0};
10. generated by V_{2}^{0} and V_{0}^{1};
11. generated by V_{0}^{3};
12. generated by V_{0}^{3} and V_{0}^{1};
13. generated by V_{0}^{4};
14. generated by V_{0}^{4} and V_{0}^{1};
15. generated by all algebras $V_{n}^{0}(n>0)$;
16. generated by all algebras $V_{n}^{0}(n>0)$ and V_{0}^{1}.

Results 2010

Theorem [2010]: WIP and IPD are equivalent over DL.
Theorem [2010]: There are exactly 16 logics with IPD in $N E(D L)$.
Theorem [2010]: The logic $L \in N E(w K 4)$ has WIP iff the logic $L+(A \rightarrow \square \diamond A)$ has WIP.

Characteristic formula of special type

For a given $x \in A t V_{n}^{m}=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$ we associate some variable p_{x}. The following formula $\theta\left(V_{n}^{m}\right)$ have the same properties with Characteristic formula:

$$
\begin{align*}
& \theta\left(V_{n}^{m}\right)=\left(\left(\left(\underset{\substack{x, y \in A t V_{n}^{m} \\
x \neq y}}{\&} \neg\left(p_{x} \& p_{y}\right)\right) \& \square\left(\bigvee_{x \in A t V_{n}^{m}} p_{x}\right) \&\right.\right. \\
& \& \underbrace{}_{x \in\left\{a_{1}, \ldots, a_{n}\right\}} \boxtimes \diamond p_{x} \& \&_{x \in\left\{b_{1}, \ldots, b_{m}\right\}}^{\&} \downarrow\left(\diamond p_{x} \leftrightarrow \neg p_{x}\right))) \rightarrow 0) \tag{1}
\end{align*}
$$

Axiomatization of extensions of DL with IPD

Theorem [2012]: Following extensions of $D L$ and only they have IPD:

$$
\begin{aligned}
& \text { 1. }(\text { For })^{\prime}=D L+\theta\left(V_{1}^{0}\right) \text {; For }=(\text { For })^{\prime}+\theta\left(V_{0}^{1}\right) \text {; } \\
& \text { 2. }\left(L V_{1}^{0}\right)^{\prime}=D L+\theta\left(V_{0}^{2}\right)+\theta\left(V_{1}^{1}\right)+\theta\left(V_{2}^{0}\right) \text {; } \\
& L V_{1}^{0}=\left(L V_{1}^{0}\right)^{\prime}+\theta\left(V_{0}^{1}\right) ; \\
& \text { 3. }\left(L V_{0}^{2}\right)^{\prime}=D L+\theta\left(V_{1}^{1}\right)+\theta\left(V_{2}^{0}\right) ; L V_{0}^{2}=\left(L V_{0}^{2}\right)^{\prime}+\theta\left(V_{0}^{1}\right) ; \\
& \text { 4. }\left(L V_{1}^{1}\right)^{\prime}=D L+\theta\left(V_{2}^{0}\right)+\theta\left(V_{0}^{2}\right)+\theta\left(V_{0}^{3}\right) ; \\
& L V_{1}^{1}=\left(L V_{1}^{1}\right)^{\prime}+\theta\left(V_{0}^{1}\right) ; \\
& \text { 5. }\left(L V_{2}^{0}\right)^{\prime}=D L+\theta\left(V_{3}^{0}\right)+\theta\left(V_{1}^{1}\right)+\theta\left(V_{0}^{2}\right) \text {; } \\
& L V_{2}^{0}=\left(L V_{2}^{0}\right)^{\prime}+\theta\left(V_{0}^{1}\right) ; \\
& \text { 6. }\left(L V_{0}^{3}\right)^{\prime}=D L+\theta\left(V_{0}^{2}\right)+\theta\left(V_{2}^{0}\right) ; L V_{0}^{3}=\left(L V_{0}^{3}\right)^{\prime}+\theta\left(V_{0}^{1}\right) \text {; } \\
& \text { 7. }\left(L V_{0}^{4}\right)^{\prime}=D L+\theta\left(V_{0}^{2}\right)+\theta\left(V_{0}^{3}\right)+\theta\left(V_{3}^{0}\right)+\theta\left(V_{2}^{1}\right) \text {; } \\
& L V_{0}^{4}=\left(L V_{0}^{4}\right)^{\prime}+\theta\left(V_{0}^{1}\right) ; \\
& \text { 8. }(S 5)^{\prime}=D L+\theta\left(V_{0}^{2}\right)+\theta\left(V_{1}^{1}\right) ; S 5=(S 5)^{\prime}+\theta\left(V_{0}^{1}\right) \text {. }
\end{aligned}
$$

Results 2012

Theorem [2012]: The deductive interpolation property is decidable over DL.

Theorem [2012]: The amalgamation property is decidable for varieties of $D L$-algebras.

Theorem [2012]: The weak interpolation property is decidable over wK4.

From the paper of L. Maksimova [1980] follows that the logics $\left(L V_{1}^{1}\right)^{\prime}$ and ($L V_{1}^{1}$) does not have the CIP.

The question about the number of extensions of $D L$ with CIP is still open.

Next question

Does the class of finitely generated and simple n-transitive modal algebras have the amalgamation property?

Does the n-transitive modal logic have the WIP?

Simple n-transitive modal algebras

Theorem 1: A n-transitive algebra \mathfrak{A} is simple iff for all x in \mathfrak{A} $[n] x= \begin{cases}1, & \text { if } x=1 ; \\ 0, & \text { if } x \neq 1 .\end{cases}$
Lemma 1: If the formula $[n] A \rightarrow \square^{n+1} A$ is valid in a Kripke frame, then the frame satisfies the condition $\forall u \forall v\left(u R^{n+1} v \Rightarrow\left(u=v\right.\right.$ or $\exists k: k \leq n$ and $\left.\left.u R^{k} v\right)\right)$.

The frames which identify the condition of Lemma 1 we will call n-transitive.

Representation theorems

Let $\mathcal{W}=<\mathcal{W}, R>$ be a given frame. Denote by \mathcal{W}^{+}the power-set of \mathcal{W} and let $\mathfrak{W}^{+}=\left(W^{+}, \rightarrow, \perp, \square\right)$ where $\perp=\emptyset, X \rightarrow Y=(W-X) \cup Y), \square X=\{x \in \mid \forall y(x R y \Rightarrow y \in X)\}$ for all $X, Y \subseteq W$. Then \mathfrak{W}^{+}is a modal algebra.

Let $\mathfrak{A}=(|\mathfrak{A}|, \rightarrow, \perp, \square)$ be a modal algebra, $W(\mathfrak{A})$ the set of it ultrafilters, $R(\mathfrak{A})$ a relation on $\mathfrak{A}=(|\mathfrak{A}|, \rightarrow, \perp, \square)$ defined as follows: $\Phi R(\mathfrak{A}) \Psi$ iff $\forall x(\square x \in \Phi \Rightarrow x \in \Psi)$.
Let $\mathfrak{W}(A)=(W(\mathfrak{A}), R(\mathfrak{A}))$.
Representation theorem of Jonsson and Tarski [1951]: For each modal algebra \mathfrak{A}, the mapping $\varphi(x)=\{\Phi \in W(\mathfrak{A}) \mid x \in \Phi\}$, is a monomorphism from \mathfrak{A} into $\mathfrak{W}^{+}(A)$. Moreover, if A is finite, φ is an isomorphism onto $\mathfrak{W}^{+}(A)$.

For each finite modal algebra \mathfrak{A} the frame $\mathfrak{W}(A)$ may be replaced by the frame $\operatorname{At}(\mathfrak{A})$ of all atoms of \mathfrak{A}, where a relation R is defined by $a R b \Leftrightarrow a \leq \diamond b$ for all a, b in $\operatorname{At}(\mathfrak{A})$.

Following [Karpenko, Maksimova, 2010] we denote the frame $\mathcal{X}_{n}^{m}=<X_{n}^{m}, R>$, where $X_{n}^{m}=\left\{a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right\}$ and

$$
\left(u R v \Leftrightarrow\left(u \neq v \text { or } u=a_{i} \text { for some } 1 \leq i \leq n\right)\right)
$$

which is isomorphic to the frame of atoms $\operatorname{At}\left(V_{n}^{m}\right)$.

For a given finite algebras \mathfrak{A}_{1} and \mathfrak{A}_{2} the condition $\mathfrak{A}_{1} \preceq \mathfrak{A}_{2}$ is equivalent for the existence of p-morphism from $\operatorname{At}\left(\mathfrak{A}_{2}\right)$ onto At $\left(\mathfrak{A}_{1}\right)$.

Results

Lemma 2: Let F be a frame and $\theta_{1}: F \rightarrow \mathcal{X}_{0}^{2}$ and $\theta_{2}: F \rightarrow \mathcal{X}_{0}^{3}$ are p -morphisms. Then the frame F is not 2-transitive.

Corollary 2: The class of finitely generated, finite and simple 2-transitive modal algebras dose not have AP.

Results

By $C V^{n}$ we denote a modal algebra with atoms b_{1}, \ldots, b_{n} such that $\diamond b_{n}=b_{1}, \diamond b_{i}=b_{i+1}$ for $1 \leq i \leq n-1$.

By the Lemma $1 C V^{n}$ is simple n-transitive modal algebra.
By $\mathcal{C} V^{n}$ we denotes the correspondence frame $<A t\left(C V^{n}\right), R\left(C V^{n}\right)>$.

Results

Lemma 3: Let F be a frame and $\theta: F \rightarrow \mathcal{C} \mathcal{V}^{n}$ be a mapping. Then θ is a p-morphism iff the following condition holds:

1. $\forall x, y \in \theta^{-1}\left(c_{i}\right)$ dose not hold $(x R y)$ for all $i \in\{1, \ldots, n\}$;
2. $\forall x \in \theta^{-1}\left(c_{i}\right) \exists y \in \theta^{-1}\left(c_{i+1}\right)$ such that $x R y$ for all $\forall i \in\{1, \ldots, n-1\}$;
3. $\forall x \in \theta^{-1}\left(c_{n}\right) \exists y \in \theta^{-1}\left(c_{1}\right)$ such that $x R y$;
4. $\forall x \in \theta^{-1}\left(c_{i}\right) \forall y \in \theta^{-1}\left(c_{k}\right)\left(\neg c_{i} R c_{k} \Rightarrow \neg x R y\right)$.

Lemma 4: Let F be a frame and $\theta_{1}: F \rightarrow \mathcal{C} \mathcal{V}^{n}$ and $\theta_{2}: F \rightarrow \mathcal{C} \mathcal{V}^{n-1}$ are p-morphisms. Then the frame F is not n-transitive ($n \geq 3$).

Theorem: The class of finitely generated, finite and simple n-transitive modal algebras does not have AP.

Thank you for your attention.

