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The minimal modal logic K

The minimal modal logic K is determined by a set of its axioms
and rules of inference:
Axioms:

1. All the tautologies of the classical two-valued logic;
2. 0O(p — q) — (Op — Ogq), Op = -O-p.
Rules of inference:
A (A— B)
' B
R2. A (necessitation rule);

R1 (modus ponens);

R3. Substitution (of formulas for variables).

Anastasia Karpenko On interpolation in n-transitive modal logics



Normal modal logics

We use standard denotation for some members of NE(K):
K" = [n]p — O™ p, where [n]p = p&Op& ... &O"p.
wK4 = K + ((p&0Op) — DOp);

K4 = K+ (Op — 0Op);

DL = wK4 + (p — O<p);

S4 = K4+ (0Op — p);

S5 =S4+ (p — OOp).
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Interpolation properties

If pis a list of propositional variables, let A(p) denote a formula
whose all variables are in p. Suppose that p, q, r are disjoint lists of
propositional variables.

CIP: If -1 A(p,q) — B(p,r), then there exist a formula C(p) such
that -, A(p,q) — C(p) and - C(p) — B(p, r).

IPD: If A(p,q) 1 B(p,r), then there exist a formula C(p) such
that A(p,q) -, C(p) and C(p) - B(p, ).

WIP: If A(p,q), B(p,r) b L, then there exist a formula C(p)
such that A(p,q) . C(p) and C(p), B(p,r) Fr L.
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CIP = IPD = WIP (in normal modal logics reverse arrow fail)
L. Maksimova: CIP, IPD and WIP are equivalent over S5.

L. Maksimova: CI/P and IPD are decidable over S4.

A. Chagrov: CIP and IPD are undecidable over K4.

A. Karpenko: WIP is decidable over K4.
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Larisa L. Maksimova proved that IPD is equivalent to
amalgamation of correspondence varieties of modal algebras.

For a given logic L, its associated variety V(L) = {21 | A E L}. Itis
known that L = {A| (V& € V(L))(2LF A)}. For every class K of
modal algebras the set L(K) = {A| (V2 € K)(2 F A)} is a modal

logic.

A class V has the amalgamation property if it satisfies the
following condition:

AP: For any B, € V with a common subalgebra 2, there exist an
algebra © in V and monomorphisms § : B - D and e : € — D
such that §(x) = ¢(x) for all x € A.
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Modal algebras

A modal algebra is an algebra 20 = (||, —, L, O) which satisfies
the identities of Boolean algebras for — and L and, moreover, the
conditions OT = T, where T =1 — 1, and

O(x — y) < 0Ox — Oy.

A modal algebra 2 is weak transitive or wK4-algebra if it satisfies
x&0Ox < O0Ox.

A modal algebra 2 is n-transitive if it satisfies [n]x < 0" 1x, where
[n]x = x&Ox& ... &0O"x.

A weak transitive modal algebra is called DL-algebra if it satisfies
x < O¥x, where Ox = —~O0—x.
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Important theorems

Theorem [Maksimova] : For any normal modal logic L the
following are equivalent:
1. L has IPD;
2. the variety V(L) has AP;
3. for a given finitely generated finitely indecomposable algebras
2, B, €in V(L) and monomorphisms 3 : A — B and
v : A — € there exist an algebra © in V(L) and
monomorphisms 6 : B — D, ¢ : € - D, with §38 = e~.

Theorem [Maksimova] : For any normal modal logic L the
following are equivalent:
1. L has WIP;
2. the class Sim(V/(L)) of simple algebras of V(L) has AP;
3. the class FG(Sim(V/(L))) of finitely generated and simple
algebras of V(L) has AP.
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Simple wK4 algebras

An algebra is said to be simple if it has exactly two congruences.

Theorem [Karpenko, Maksimova 2010] : A weak transitive

. . ) 1, if x=1;
algebra 2 is simple iff for all x in A x&0Ox =[x = { 0, if x £1.
Theorem [Karpenko, Maksimova 2010]: Every simple weak
transitive algebra is DL-algebra.
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V" algebras

By V" we denote a modal algebra with (n+ m) atoms ay, ..., ap,
by, ..., bn such that, for every atom x:

Ox — 1, x=a forsomel<i<n;
| x, x=b; forsomel<j<m;

Theorem [Karpenko, Maksimova 2010]: Every finitely
generated finitely indecomposable DL-algebra is simple and
isomorphic to the algebra V7 for the suitable n+ m > 0.
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System of embedding

For an arbitrary finite DL-algebras 2 and B, 20 < B denotes that
2 is isomorphically embedded into 5.

Theorem [Karpenko, Maksimova 2010]: The relation < is a
reflexive and transitive closure of the relation

m m m m—+1 m m—+2
Vn = n+17vn = Vn 7Vn = Vn—l ’

form>0,n>1.
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System of embedding
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One to one correspondence

By K(DL) we denote a class of all algebras V" where n4+ m > 0.

The class K is called closed downward if for any algebra 21 € K the
following condition (B < A = 2 € K) is valid.

Theorem [2010]: There is a one to one correspondence between
varieties of DL-algebras and subclasses of K(DL) closed downward.
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Amalgamable varieties of DL-algebras

Theorem [2010]: There are exactly 16 amalgamable varieties of
DL-algebras, the corresponding subclasses of K(DL) are the
following:

. empty;

. generated by V{;

. generated by VIO;

. generated by VP and V{;

. generated by V02;

. generated by V@ and V{;

SOl Ww N
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7. generated by V1,

8. generated by V11 and V(};

9. generated by V2;

10. generated by V20 and Vol;

11. generated by V3;

12. generated by VO3 and Vol;

13. generated by V};

14. generated by V(;1 and Vol;

15. generated by all algebras V0 (n > 0);

16. generated by all algebras V2 (n > 0) and V.
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Results 2010

Theorem [2010]: WIP and IPD are equivalent over DL.
Theorem [2010]: There are exactly 16 logics with IPD in NE(DL).

Theorem [2010]: The logic L € NE(wK4) has WIP iff the logic
L+ (A — 0OCA) has WIP.
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Characteristic formula of special type

For a given x € AtV,)” ={a1,...,ap, b1,..., bm} we associate
some variable p.. The following formula §(V,") have the same
properties with Characteristic formula:

0= (&, (et )um (Vo

Ay ey
& & et & D(Opy < ﬁpx))> N o) (1)
XE{al, .,a, Xe{bl,.,.,bm}
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Axiomatization of extensions of DL with IPD

Theorem [2012]: Following extensions of DL and only they have
IPD:

1. (For) = DL+ 0(VY); For = (For) + 0(V});
2. (LVR) = DL+ 6(VZ) + 0(VL) + 0(VY);
LV = (LVD) +6(Vg);
3. (LV@) = DL+ 0(V}) + 0(V9); LV = (LVZ) + 6(V});
4. (LVEY = DL+ 0(VD) + 0(VE) + 0(V§);
Lvi = (V) +0(Vg):
5. (LVRY = DL+ 0(V2) + 0(VL) + 0(V@),
LV3 = (LV3) +0(Vg):
6. (LV3) = DL+ 0(V2)+0(V9); LV§ = (LV§) + 6(V{);
7. (LVg) = DL+ 0(V§) +0(V3) + 0(VE) + 0(V3);
LVg = (LVG) +0(Vg):
8. (S5) = DL+ (V@) + 0(VL); S5 = (S5) + 6(V{).
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Results 2012

Theorem [2012]: The deductive interpolation property is decidable
over DL.

Theorem [2012]: The amalgamation property is decidable for
varieties of DL-algebras.

Theorem [2012]: The weak interpolation property is decidable
over wK4.

From the paper of L. Maksimova [1980] follows that the logics
(LVL) and (LV!) does not have the CIP.

The question about the number of extensions of DL with CIP is
still open.
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Next question

Does the class of finitely generated and simple n-transitive modal
algebras have the amalgamation property?

Does the n-transitive modal logic have the WIP?
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Simple n-transitive modal algebras

Theorem 1: A n-transitive algebra 2 is simple iff for all x in 2

[]x = 1, ifx=1,
=0, ifx £ 1

Lemma 1: If the formula [n]A — 0" 1A is valid in a Kripke frame,
then the frame satisfies the condition
Yuvv(uR™ v = (u= v or 3 k: k < nand uRkV)).

The frames which identify the condition of Lemma 1 we will call
n-transitive.
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Representation theorems

Let W =< W, R > be a given frame. Denote by W the
power-set of W and let 207 = (W™, —, 1, 0O) where
1=0,X=Y=(W-X)UuY),0X ={xe€|Vy(xRy = y € X)}
for all X, Y C W. Then 207 is a modal algebra.

Let 2 = (||, —, L, O) be a modal algebra, W(2) the set of it
ultrafilters, R(2A) a relation on 2 = (||, —, L, 0) defined as
follows: PR(A)W iff Vx(Ox € & = x € V).

Let 20(A) = (W(L), R(1)).

Representation theorem of Jonsson and Tarski [1951]: For
each modal algebra 2/, the mapping p(x) = {® € W()|x € ]}, is
a monomorphism from 2l into 20 (A). Moreover, if A is finite, ¢ is
an isomorphism onto 201 (A).
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For each finite modal algebra 2( the frame 20(A) may be replaced
by the frame At(2l) of all atoms of A, where a relation R is defined
by aRb < a < &b for all a, b in At().

Following [Karpenko, Maksimova, 2010] we denote the frame
XN =< X" R >, where X" ={a1,...,an, b1,...,bn} and

(uRv < (u # v or u = a; for some 1 < i < n))

which is isomorphic to the frame of atoms At(V,").

For a given finite algebras 211 and 2(, the condition 1; < 25 is
equivalent for the existence of p-morphism from At(2l;) onto
At(%ll).
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Lemma 2: Let F be a frame and 01 : F — on and 0> : F — Xg’
are p-morphisms. Then the frame F is not 2-transitive.

Corollary 2: The class of finitely generated, finite and simple
2-transitive modal algebras dose not have AP.
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By CV" we denote a modal algebra with atoms by, ..., b, such
that ¢b, = b1, Ob; = b,‘+1 for1<i<n-1.

By the Lemma 1 CV" is simple n-transitive modal algebra.

By CV" we denotes the correspondence frame
< At(CV"),R(CV") >.
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Lemma 3: Let F be a frame and 6 : F — CV" be a mapping. Then
0 is a p-morphism iff the following condition holds:

1. Vx,y € 871(c;) dose not hold (xRy) for all i € {1,...,n};

2. Vx € 07Y(c;)Jy € 071(ciy1) such that xRy for all
Vie{l,...,n—1}

3. Vx € 07(c,)3y € 071(c1) such that xRy;

4. ¥x € 07Y(c;))Vy € 071 (ck)(—ciRek = —xRy).

Lemma 4: Let F be a frame and 6; : F — CV" and
0> : F — CV"! are p-morphisms. Then the frame F is not
n-transitive (n > 3).

Theorem: The class of finitely generated, finite and simple
n-transitive modal algebras does not have AP.
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Thank you for your attention.
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