
Problems of Unification and Admissible

Rules in Non-Classical Logics (with

applications to AI, CS and CD)

V.Rybakov

School of Computing, Mathematics and DT,

Manchester Metropolitan University,

John Dalton Building, Chester Street, Manchester M1 5GD,

U.K.

V.Rybakov@mmu.ac.uk

Part Time: Siberian Federal University, Krasnoyarsk



History, Pre-History

(1955) Lorentzen: Clear definition of admissible rules.

(1975) Harvey Fridman problem: if IPC H is decidable w.r.t

admissible rules.

Solution: yes – Rybakov, 1984 - IPC, S4, Grz + etc.

(1975) A.Kuztetsov problem: if IPC H has a finite basis for

inference rules: -

Solution: no – Rybakov 1985-86.



(1950???) P.Novikov Problem: decidability logical equations in

IPC + etc.

Solution: yes - Rybakov -1986

(1999) S.Ghilardi - decidability of admissibility in IPC via unifi-

cation and projective formulas (projective approximation) - new

solution for Friedman problem. Silvio Ghilardi: Unification in

Intuitionistic Logic. J. Symb. Log. 64(2): 859-880 (1999)

(2004) S.Ghilardi - unification via extension property in general

modal frames, admissibility in modal logics S4, S4.2.

(2001) R. Iemhoff. Explicit basis for rules admissible in IPC - On

the admissible rules of intuitionistic propositional logic. Journal

of Symbolic Logic 66, 2001 (p. 281-294).



(2001) V. Rybakov. Explicit basis for rules admissible in modal

logic S4. : Construction of an Explicit Basis for Rules Admissible

in Modal System S4. Math. Log. Q. 47(4): 441-446 (2001).

(2009) R. Iemhoff and G. Metcalfe. Proof theory for admissible

rules. Annals of Pure and Applied Logic 159 (1-2), 2009 (p.171-

186).



Short recall of definitions and notation

Definition. An inference rule φ1, . . . , φn/ψ is said to be admis-

sible in a logic L if for any substitution ε the following holds: if

ε(φ1) ∈ L, . . . , ε(φn) ∈ L then ε(ψ) ∈ L,

Definition. A formula φ is unifiable in a logic L if there is a

substitution ε (which is called a unifier for φ) such that ε(φ) ∈ L.

Definition. A unifier ε (for a formula φ in a logic L) is more

general than a unifier ε1 iff there is a substitution δ such that for

any letter x, [ε1(x) ≡ δ(ε(x))] ∈ L.



If a logic L is decidable, to check the unifiability a formula in L is
(theoretically, not computationally) an easy task: it is sufficient
to use only ground substitutions: mappings of variable-letters in
the set {⊥,⊤}. But the problem - how to find all unifiers - all
solving substitutions - is not easy at all.

Definition. A set of unifiers CU for a given formula φ in a logic
L is a complete set of unifiers, if the following holds. For any
unifier σ for φ in L, there is a unifier σ1 from CU , where σ1 is
more general than σ.

Definition. A logic L has unitary unification if any unifiable in
L formulas has a complete set of unifiers consisting of single
formula (we call it mgu - most general unifier)

If a logic L has finite computable set of unifiers for any unifiable
formula, L is decidable w,r.t. admissible rules: it is sufficient to
verify only these unifiers for checking admissibility.



For LTL (which possesses definable 2 and 3,

- 3x := (⊤Ux), 2 = ¬3¬
or modal logics over S4 we may formulate projectivity as follows:

Definition. A formula φ is said to be projective in a logic L

if the following holds. There is a substitution σ (which is called

projective substitution, projective unifier) such that σ is a unifier

and 2φ→ [xi ≡ σ(xi)] ∈ L for any letter xi from φ.



Proposition If a substitution σp is projective for a formula φ in
a logic L, then {σp} is a complete set of unifiers for φ (i.e. σp is
most general unifier).

Proof. Indeed, let σ be a unifier for φ in L. Since we assume
σp is projective for φ in L, we have 2φ → [xi ≡ σp(xi)] ∈ L for
any letter xi from φ. Acting by σ on the formula above we get
σ(2φ) → [σ(xi) ≡ σ(σp(xi))] ∈ L, that is σ(xi) ≡ σ(σp(xi)) ∈ L.
Q.E.D.

L has projective unification if every unifiable formula has a pro-
jective unifier.

Projectivity implies unitary unification, but not vise versa:

Modal logic S4.2 has unitary unification (Ghilardi, Sacchetti,
2006), but



Example. The unifiable formula

2(2x→ 2y) → 2x ∨ 2z

has an mgu in S4.2 but can not have a projective unifier in S4.2.



Survey: Recent Solutions of open questions in ’standard‘

areas ...

Emil Jerábek. Complexity of admissible rules, Archive for Math-

ematical Logic 46 (2007):

admissibility in typical normal extensions of K4 (K4, GL, S4,

S4Grz)and s.i. logics (IPC +++) is coNEXP-complete (and in

particular, strictly more complex than the drivability problem,

under reasonable complexity-theoretic assumptions).

Emil Jerábek. Independent bases of admissible rules, Logic Jour-

nal of the IGPL 16 (2008).

IPC, K4, GL, and S4, as well as all logics inheriting their admis-

sible rules, have independent bases of admissible rules.



A move for new open problems, to new horizon

(i) Lukasiewicz logic:

Emil Jerábek. Admissible rules of Lukasiewicz logic, Journal of
Logic and Computation 20 (2010)

Lukasiewicz multi-valued propositional logic: admissibility of multiple-
conclusion rules in Lukasiewicz logic, as well as validity of uni-
versal sentences in free MV-algebras, is decidable (in PSPACE).

Emil Jerábek. Bases of admissible rules of Lukasiewicz logic,
Journal of Logic and Computation 20 (2010)

Explicit bases of single-conclusion and multiple-conclusion ad-
missible rules of propositional Lukasiewicz logic, also – a proof
that Lukasiewicz logic has no finite basis of admissible rules.



Linear temporal logic LTL with UNTIL and NEXT

(2008)V. Rybakov. Linear temporal logic LTL with until and

next, logical consecutions. Annals of Pure and Applied Logic

155, 2008.

LTL is decidable w.r.t admissible inference rules. As a conse-

quence we obtain algorithms verifying the validity quasi-identities

in varieties of corresponding algebras.

(2011) S. Babenyshev, V. Rybakov. Linear temporal logic LTL:

basis for admissible rules Journal of Logic and Computation,

2011.

Provide an explicit (infinite) basis for rules admissible in LTL.



(2012) V. V Rybakov. Writing out Unifiers in Linear Temporal

Logic Journal of Logic and Computation 22, 2012.

Any unifiable in LTL formula has a most general unifier (thus,

LTL enjoys unitary unification). The algorithm of construction

such MGU is provided. This solves unifiability problem for LTL

and the admissibility problem.



Unification with Coefficients

V. Rybakov. Writing out unifiers for formulas with coefficients
in intuitionistic logic Logic Journal of IGPL, 2013.

V. Rybakov. Unifiers in transitive modal logics for formulas with
coefficients (meta-variables) Logic Journal of IGPL, 2013.

Solution of the unification problem in these logics for formulas
with coefficients (meta-variables).

LTL with SINCE and similar (e.g. simply temporal logics

with nodes) - EASY via modeling universal modality:

2008, V Rybakov. Multi-modal and temporal logics with univer-
sal formulareduction of admissibility to validity and unification.
Journal of logic and computation, 2008.



Paraconsistent minimal Johanssons’ logic J and positive

intuitionistic logic

2013, S. Odintsov, V. Rybakov. Unification and admissible rules

for paraconsistent minimal Johanssons’ logic J and positive intu-

itionistic logic IPC+ . Annals of Pure and Applied Logic, 2013.

This paper proves that the problem of admissibility for inference

rules with coefficients (parameters)(as well as plain oneswith-

out parameters) is decidable for the paraconsistent minimal Jo-

hanssons’ logic J and the positive intuitionistic logic IPC+. Using

obtained technique we show also that the unification problem for

these logics is also decidable: we offer algorithms which compute

finite complete sets of unifiers for any given unifiable formula.



Description logics

F. Baader, S. Ghilardi Unification in Modal and Description Log-

ics, Logic Journal of the IGPL, vol.19, n.6, pp. 705-730, 2011.

via Algebra

S. Ghilardi. Unification, Finite Duality and Projectivity in Locally

Finite Varieties of Heyting Algebras , Annals of Pure and Applied

Logic, vol. 127/1-3, pp.99-115 (2004).



APPLICATIONS to AI, CS and CD

V.Rybakov. Algorithm for Decision Procedure in Temporal Logic

Treating Uncertainty, Plausibility, Knowledge and Interacting Agents,

International Journal of Intelligent Information Technologies (IJIIT)

6 (2010).

Logic UIALTL, which is a combination of the linear temporal logic

LTL, a multi-agent logic with operation for passing knowledge

via agents’ interaction, and a suggested logic based on operation

of logical uncertainty. The logical operations of UIALTL also

include (together with operations from LTL)

• operations of strong and weak until,

• UIALTL agents’ knowledge operations,



• UIALTLoperation of knowledge via interaction,

• UIALTL operation of logical uncertainty,

• UIALTL the operations for environmental and global knowl-

edge.

V Rybakov. Interpretation of chance discovery in temporal logic,

admissible inference rules. - In: Knowledge-Based and Intelligent

Information and Engineering Systems, KES-2010. LNCS,2010.

CD - in terms of plausibility to discover in search.



V Rybakov, S Babenyshev. Multi-agent logic with distances

based on linear temporal frames Artificial Intelligence and Soft

Computing, 337-344, 2010.

Distance - from k to k +m steps - possible to discover in this

distance.

V. Rybakov. Representation of knowledge and uncertainty in

temporal logic LTL with since on frames Z of integer numbers.

Knowledge-Based and Intelligent Information and Engineering

Systems, 306-315, 2011, Springer, LNCS.

Uncertainty via combination of evidences in future and past.



Projectivity in linear temporal logics LTL with UNTIL

(Origin) Linear Temporal Logic LTL with Next and Until:

Amir Pnueli, 1977: LTL was first proposed for the formal verifi-

cation of computer programs.

Manna and Pnueli: The temporal logic of Concurrent and Reac-

tive Systems, 1992.

Moshe Y. Vardi. An Automata-Theoretic Approach to Linear

Temporal Logic, since 1995



Short recall of definitions:

LTL is built up from a finite set of propositional variables AP, the

logical operations ¬ and ∨, and the temporal modal operations

N (next time) and U (until). Formally, the set of LTL formulas

over AP is inductively defined as follows:

If p ∈ AP then p is a LTL-formula;

If ψ and φ are LTL-formulas then

¬ψ, ψ ∨ φ, Nφ and ψUφ, are LTL formulas.



Semantics for LTL consists of runs of computation with given
evaluations of propositional variables AP . Formally they may be
viewed as Kripke models with base sets to be natural numbers,
with standard understanding meaning of next (interpretation of
N), and with a given valuation V of AP . M := ⟨N,N, V ⟩, ∀p ∈
AP, V (p) ⊆ N. Formally, the satisfaction (truth) relation between
a word and an LTL formula is defined as follows: ∀w ∈ N ,

w |=V p ⇐⇒ p ∈ V (p);

w |=V ¬φ ⇐⇒ not(w |=V φ);

w |=V φ ∨ ψ ⇐⇒ w |=V φ or w |=V ψ

w |=V Nφ ⇐⇒ (w+1) |=V φ;

w |=V φUψ ⇐⇒ ∃k ∈ N [(w+ k) |=V ψ and ∀n < k(w+n) |=V φ].

(φ must remain true until ψ becomes true)



Linear modal logic S4.3 since (long ago (1983)) was known to be

decidable about admissibility and structure of admissibility bases.

But recently an algorithm for constructing projective unifiers in

logics extending S4.3 was offered in

W.Dzik and P. Wojtylak (2011); Wojciech Dzik, Piotr Wojtylak:

Projective unification in modal logic. Logic Journal of the IGPL

20(1): 121-153 (2012).

by a technique using Löwenheim substitutions and CNF-forms

in such logics. So, any unifiable formula there is projective and

hence has a computable mgu.



With linear temporal logic LTL the case is more complicated:

Proposition (Rybakov, 2012) Formula φ = 2(2x ∨ (¬x ∧N2x))

is unifiable in LTL but not projective.

Proof. Substitution x 7→ ⊤ is an obvious unifier for φ. Suppose

now φ is projective and π is a corresponding projective unifier.

Consider the run NV (starting from 0: |NV | := {0,1,2, . . .}):
x◦ N−→¬x◦ N−→2x◦ N−→2x◦ · · ·

Since (NV ,1) V2φ, then (NV ,1) V x↔ π(x). Therefore, notwith-

standing either (NV ,0) V π(x) or (NV ,0) V ¬π(x), we have that

(NV ,0) V ¬2π(x) and, at the same time, (NV ,0) V ¬N2π(x).

Thus (NV ,0) V ¬π(φ), hence π cannot be an φ-unifier, a con-

tradiction. Q.E.D.



Bearing in mind our task to push anyway projectivity to LTL, we

will consider LTLU - the fragment of LTL with the operation U

but without next - N (that is formulas of this fragment do not

contain N).

Since basic operation - until - U is presented in LTLU, we can

again define basic modal operations - 2 and 3 and define pro-

jectivity as earlier.



Theorem Any unifiable in LTLU formula φ is projective.

Take any X ⊆ Sub(2φ), let

Ψ(X) := 2φ ∧
∧

ψUξ∈X
ψUξ ∧

∧
ψ,ξ∈Sub(2φ),ψUξ/∈X

¬(ψUξ).

σ(xi) := (2φ(x1, ..., xn) ∧ xi) ∨ (¬2φ ∧32φ

∧
∨

Ψ(X)∈Sat
2[¬2φ ∧32φ→ ¬2φUΨ(X) ∧ T (Ψ(X), xi))])∨

(¬32φ ∧ T (xi)) .



Thus, LTLU enjoys projective unification and any unifiable for-

mula has computable mgu. This solves open problem of recog-

nizing rules admissible in LTL.


