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● In the early days of modal logic (before 1980s) there was 

interest in studying multiple particular systems.

Contemporary modal logic also investigates classes of logics and 

general constructions combining different systems.

● Products were introduced in the 1970s; their intensive study 

started in the 1990s.

Motivations for studying products of modal propositional logics

• A natural type of combined modal logics

• Connection to first-order classical logic

• Connection to first-order modal logics

• Connection to relation algebras

• Connection to description logics

The main reference for products (BOOK03)

D. Gabbay,  A. Kurucz, F. Wolter, M. Zakharyaschev. Many-dimensional 

Modal Logics: Theory and Applications. Elsevier, 2003.



PRODUCTS OF FRAMES
Kripke n-frames: (W,R1,...,Rn) (relational system with n binary 

relations).

Def. The product of two Kripke frames

(W,R1,...,Rn) × (V,S1,...,Sm):= (W×V,R11,...,Rn1,S12,...,Sm2)

where 

(x1,y1)Ri1(x2,y2) ⇔ x1Rix2 & y1=y2

(x1,y1)Sj2 (x2,y2) ⇔ x1=x2 & y1Sjy2

Multiple products  F1 ×... × Fn  are defined in an obvious way. The 

multiplication is associative up to isomorphism.





PRODUCTS OF MODAL LOGICS

Normal n-modal logics are defined us usual - as sets of modal 

formulas in the propositional language with unary modal 

connectives 1,...,n containing the minimal logic and closed 

under standard rules.

Every Kripke frame is associated with a modal logic – the set of all 

valid formulas:
L(F) := {A | F╞ A}. 

Logics of this form are called  (Kripke) complete.

If F is finite, L(F) is called tabular.

For a class of frames C

L(C ) := ∩{L(F) | F∈ C }.

If all frames in C are finite, L(C ) has the finite model property 

(fmp).



A modal logic L defines the class of L-frames

V(L) := {F | F╞ L }.

L is called elementary if  V(L) is an elementary (first-order 

definable) class in the clаssical sense.

Remark  L is complete iff L=L(V(L)).



Some particular complete logics

Kn is the minimal n-modal logic, K=K1.

K.tn is the minimal n-temporal logic, K.t=K.t1.

K.tn -frames are (W,R1,(R1)-1,...,Rn,(Rn)-1).

T = K+p®p = L(all reflexive frames)

K4 = K+p®p = L(all transitive frames)

S4 = K4+p®p =L(all transitive reflexive frames).

K4.3 = L(all transitive non-branching frames)

=L(all strict linear orders)

S4.3 = K4.3+p®p = L(all linear orders)

S5 = S4+◊p®p = L(all equivalence frames)

=L(all universal frames)

Grz = L(all finite posets)

GL = L(all strict finite posets)

Grz3 = L(all finite chains)

GL3 = L(all strict finite chains)



Def. The product of two modal logics 

 L1×L2 := L({F1×F2 | F1╞ L1 , F2╞ L2 }.

Similarly we can define multiple products

L1×...×Ln := L({F1×...×Fn | F1╞ L1 ,..., Fn╞ Ln }.

However, multiplication of logics is probably non-associative (an open 

problem). 

AXIOMATIZATION: FIRST RESULTS

AXIOMATIZATION PROBLEM: to find axioms of L1×...×Ln  given the 

axioms of  L1,..., Ln.

Theorem 1 (Sh 1987, Gabbay&Sh 1998) 

Classes of frames C1,..., Cn  are elementary ⇒ L(C1×...×Cn )  is RE. 

(So, L1,..., Ln  are Kripke complete and elementary ⇒ L1×...×Ln  is RE. 

Corollary 1.1 (Sh 1987) L((Q,<)2), L((Q, ≤)2)   are RE. 



Def. The fusion of two modal logics with disjoint modalities

L1*L2  := the smallest logic containing L1 ∪L2

Remarks on fusions

Fusion of logics preserves many properties:

Theorem 2 (Kracht&Wolter 1991, Fine&Schurz 1996)  Fusion 

preserves Kripke completeness, the fmp, decidability. 

Bad news: products do not preserve any of these properties.

Good news: sometimes they still do.

Def. The commutative join of two modal logics with disjoint 

modalities

i (1≤ i ≤ n),  ■k  (1 ≤ j ≤ m)

is

[L1,L2] := L1*L2  + 

◊i■kp ® ■k◊ip + i■kp ↔ ■kip      for any i, k



Remark. If the modalities are not disjoint, we rename them.

The additional axioms are Sahlqvist formulas expressing the 

following properties of the relations in the product frame

(R i1)
-1 

°Sk2 Í Sk2 °(R i1)
-1 (Church - Rosser property)

R i1°Sk2 = Sk2°R i1 (commutativity)

Def.  L1, L2 are product matching if [L1,L2] = L1 × L2  



Def. A Horn sentence is a universal first order sentence of the 

form

"x...(ϕ(x,y,z) → R(x,y)),

where ϕ is positive,  R(x,y) is atomic.

A modal formula A is Horn if it corresponds to a Horn sentence 

(i.e., the class of its frames V(A) is definable by a Horn sentence).



Example Modal formulas of the form(◊…◊)p → (…)p

correspond to Horn sentences

Logics with such axioms are always complete.

Def. A modal logic is Horn axiomatizable if it is axiomatizable by 

formulas that are either variable-free or Horn.

Completeness theorem for products 

([Gabbay, Sh 1998]<< [BOOK03])

Theorem 3 If L1, L2 are Kripke complete and Horn 

axiomatizable, then they are product matching. 



Counterexamples 

Theorem 4 [Sh 1987 << Gabbay,Sh 1998]

Let L be a nontrivial 1-modal logic containing Grz. Then L and S5 

are not product-matching.

Theorem 5 [Kurucz & Marcelino 2011]

K4.3 and S5, S4.3 and S5 are not product-matching.



Stornger counterexamples: finite axiomatizability is not preserved 

(see later)

FMP AND PRODUCT FMP

Def. A QTC-logic is axiomatizable by variable-free formulas and 

formulas or axioms of the form ◊i  j p®p, i p®(i)kp. 

Theorem 6 [Sh 2005] If L2 is a QTC-logic, then 

K.tn × L2 = [K.tn ,L2 ] has the fmp.

Theorem 7 [Sh 2011] (K.tn)2=[K.tn,K.tn] has the product fmp.



THE LACK OF RECURSIVE AXIOMATIZATION 

(Reynolds&Zakharyaschev 2001<< BOOK03)

Theorem 8 (a) If C1, C2  are classes of K4.3-frames containing 

some frames with descending ω-chains and every frame in is 

Dedekind-complete (i.e., every bounded set has supremum), then 

L(C1×C2 )  is  П 1

1
-hard. 

(b) If C1, C2  are classes of K4.3-frames containing some frames 

with ascending ω-chains and every frame in C1 is Dedekind-

complete, then L(C1×C2 )  is  П 1

1
-hard.

Corollary 8.1 GL32, Grz32, GL3×Grz3 are П 1

1
-hard. 

Thus products do not preserve any interesting property of modal 

logics.



Corollary 8.2  L(F ´ G) is П 1

1
-hard whenever F is R or ω,  F is Q, R 

or ω (with < or ≤).

Theorem 9  If C1, C2  are classes of finite [strict] linear orders of 

unbounded length, then L(C1×C2 )  is  П 0

1
-complete. 

Corollary 9.1 L((ω,>)2), L((ω,≥)2) are П 0

1
-complete. 

PRODUCTS WITH TABULAR LOGICS 

Theorem 10 (Sh 2013) (1) If L1 has the fmp and L2 is tabular, then 

L1×L2 has the product fmp.

(2) If L1 is decidable, L2 is tabular, then L1×L2 is decidable.



TRANSLATION INTO MODAL PREDICATE LOGIC 

Consider n-modal predicate formulas with arbitrary predicates,  but 

without equality, constants and function symbols.

Kripke frame semantics with constant domains

Propositional Kripke frames: F = (W,R1,...,Rn)

Predicate Kripke frames with constant domains: 

Φ=(F,D), where D is nonempty.  

F is the frame of worlds of Φ, D is the set of individuals.

Kripke models over Φ: 

M=(Φ,V), where V is a valuation:  

V(P) ⊆ Dn×W for every n-ary predicate letter P,

For every formula A(x1,...,xn) and diÎD we construct a D-sentence 

A(d1,...,dn)

Forcing relation M,u B between uÎW and a  D-sentence  B 

is defined by induction, in particular:

• M,u P(d1,...,dn) iff (d1,..., dn,u)ÎV(P)



• M,u iB iff vÎRi(u) M,v  B 

• M,u  x B iff dÎ D M,u  [d/x]B

Def   M A(x1,..., xn) iff uÎW M,u  x1... xnA(x1,..., xn)

(validity in a frame)  Φ A iff for any M over Φ,  M A

L(Φ):={A |  Φ A} is the modal predicate logic of Φ.

Wajsberg-type translation

Wajsberg's translation interprets S5 in classical first-order logic.

Similarly, 

every propositional (n+1)-formula A (with modalities 1,...,n,[∀]) 

is translated into 

a first-order n-modal formula A#(y) with (maybe) a parameter y: 



Every qÎPV is associated with a unary predicate letter Q. Then

q#(y)  := Q(y) (for qÎPV)

�#(y) := �

(A→B) #(y):= A#(y) → B#(y)

(i A) #(y):= i A
#(y)

([∀]A)#(y) := ∀yA#(y)

Lemma F×(D,D×D) A iff (F,D) ∀yA#(y)



Theorem 11 Let L1 be an n-modal propositional logic, CK(L1) the 

class of all predicate Kripke frames (F,D), with F  L1.

Consider the corresponding predicate modal logic 

L(CK(L1)). Then L1×S5 is (polynomially) reducible to L(CK(L1)):

for any (n+1)-modal propositional A

L1×S5 ├ A iff  ∀yA#(y)ÎL(CK(L1))

(In other words, L1×S5 specifies a fragment within L(CK(L1))

Completeness theorems for modal predicate logics yield a standard 

axiomatization of L(CK(L1))  in some cases.

QL1 is the pure quantified version of L1, BF is the conjunction of 

Barcan schema for all modalities:

xi A ® i xA.

Theorem 12 (1) (Tanaka&Ono, 1999) If L1 is complete and V(L1) is 

universally axiomatizable (in the classical sense), then 

L(CK(L1)) = QL1 +BF

(2) (Ono, 1983<<Gabbay&Skvorstov&Shehtman, 2009)



The same holds if L1 is tabular.

In all these cases  L1×S5 is RE, but now from Theorems 11, 12, 3 

we obtain

Corollary 12.1 [L1,S5] ├ A iff  QL1+BF├ ∀yA#(y)

whenever L1 is Horn axiomatizable.



TRANSLATION INTO CLASSICAL PREDICATE LOGIC

This “square translation” resembles the well-known standard 

translation of modal formulas in the language of 

(Kn)2 into classical first-order formulas with relativized quantifiers. 

Consider the first order language with binary predicate letters

R1,...Rn,P1, P2... We associate a binary predicate letter Pi with every 

proposition letter pi.

(pi)
2(x,y):= Pi(x,y)

(A®B)2(x,y):= A2(x,y) ® B2(x,y)

^2(x,y):= ^

(iA)2(x,y):= "z (Ri(x,z) ® A2(z,y))

(■iA)2(x,y):= "z (Ri(y,z) ® A2(x,z))



Theorem 13 If L is an elementary modal logic, φ (first-order) 

axiomatizes V(L), then

(1) QCL + φ ├ ∀x∀yA2(x,y) iff  L2├ A.

(Here QCL is the classical first-order theory axiomatized by φ).

(2) If L2 has the product fmp, then the corresponding “square 

fragment” of QCL + φ  with binary predicates has the fmp (in the 

classical sense). 



Axiomatizing some products of non-product-matching

logics

Def. A propositional modal logic L is called locally tabular if, up to 

equivalence in L,  for any m there are finitely many formulas in m 

propositional variables.

It is well-known that every locally tabular logic has the fmp.

Def. A propositional 1-modal logic L above K4 is of finite depth < m 

if all L-frames are of depth <m. 

L is of  depth m if it is of depth <m+1, but not <m.  

Theorem 14(Segerberg, 1971) Every logic of finite depth is locally 

tabular.

Theorem 15 (Maksimova, 1974) The converse holds for extension 

of K4

Theorem 16 (Sh 2010) If L is of finite depth, then [,S5] is locally 

tabular.

This allows us to axiomatize products of finite depth logics above 

Grz with S5 in two ultimate cases: the catkin formula ACk is 



exactly what is missing. ACk is the Fine – Jankov formula of the 

following 2-frame (catkin):

Theorem 17 (Sh 2010) If 

L=Grz+Adepthn  (= L(all posets of depth n))

or

L=Grz3+ Adepthn (= L(all chains of depth n)),

then L× S5 =[L,S5 ] + ACk.

Corollary 17.1 These logics are decidable. 

==========================
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Theorem [Kurucz & Marcelino 2011]

K4.3×K, S4.3×K are not even axiomatizable in finitely many 

variables 

QUESTION. Are the logics 

K4.3 × S5, S4.3 × S5

finitely axiomatizable?
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PRODUCTS 
  

 
Def. The product of two Kripke frames 

(W,R1,¾,Rn)  (V,S1,¾,Sm):=  

(WV,R11,¾,Rn1,S12,¾,Sm2), 

where  



(x1,y1)Ri1(x2,y2)  x1Rix2 & y1=y2 

(x1,y1)S j2 (x2,y2)  x1=x2 & y1Sjy2 

Def. The product of two modal logics 

L1L2 := L({F1F2 | F1¼L1, F2¼L2}) 

AXIOMATIZATION PROBLEM: to find axioms of L1L2  given the 

axioms of  L1, L2 

Def. The fusion of two modal logics with disjoint modalities 

L1L2  := the smallest logic containing L1 Ü L2 

Def. The commutative join of two modal logics with disjoint 

modalities 

-i (1²i²n),  |j  (1²j²m) 

 [L1,L2] := L1L2  + -◊i
|kp¢ |k

-◊ip + -i |kp° |k -ip 

for any i, k 



Remark. If the modalities are not disjoint, we can change them. 

These are Salqvist formulas expressing the following properties of 

the relations in the product frame 

-◊i
|kp¢ |k

-◊ip : 

(Ri1)
-1¦Sk2 î Sk2¦(Ri1)

-1 (Church - Rosser property) 

 



-i |kp° |k -ip: 

Ri1¦Sk2 = Sk2¦Ri1 (commutativity) 

   

 

Def.  L1, L2 are product-matching if  L1L2 = [L1,L2 ]  
 
 

 



SQUARES 

For a class of frames C put   
C2:= {FF | FC}. 

For a modal logic ñ put 
ñ2:= ññ  

Proposition 1 [Gabbay,Sh 2000]  
ñ2=L({FF | F¼ñ}). 

("Squares of logics are determined by squares of frames".) 
Proposition 2 [Gabbay,Sh 2000]  

L1L2 is embeddable in (L1L2)
2. 

("Products are reducible to squares".) 
 



SEGERBERG SQUARES 

These are square frames with additional functions. Krister 
Segerberg (1973) studied a special type - squares of frames 
with the universal relation. 
He considered the following functions on squares. 

§

:  (x,y) à(y,x)  (diagonal symmetry) 

 §-
: (x,y) à(y,y)  (the first diagonal projection) 

§
|
: (x,y) à(x,x)  (the second diagonal projection) 

These functions can be associated with extra modal 
operators , -, |. So in square frames  they are interpreted 
as follows: 

(x,y)¼ A  iff  (y,x)¼A 

(x,y)¼ -A  iff  (x,x)¼A 
(x,y)¼ |A  iff  (y,y)¼A 

Remark. Segerberg used the notation  instead of . 
  



Formally we define the Segerberg square of a frame  
F=(W,R1,¾,Rn) as the (2n+3)-frame 
F2 :=(F2,§


, §-

, §
|
) (where §


,§-

,§
| are the 

functions on W2 described above). 
Respectively, the Segerberg square  of an n-modal logic 

ñ is defined the logic of the Segerberg squares of its frames  
ñ2:= L({F2 | F¼ñ}). 

 

TOMORROW (OR SUCCESSOR) LOGIC 

SL:= K + ◊p ° p 

(an equivalent form: K + p ° p)  
This well-known logic is also due to Segerberg (1967). It is 
complete w.r.t. the frame 

 
(the successor relation on natural numbers).  



Every logic of a frame with a functional accessibility relation 
is an extension of SL.  

 

AXIOMATIZING SEGERBERG SQUARES 

Soundness  Every Segerberg square validates the following 
formulas  
The corresponding semantic conditions for an arbitrary (2n+3)-frame 
 (V,X1,...,Xn, Y1,...,Yn, f,f -

,f
|
) 

are in the right column; here fg denotes the composition of functions: 
(fg)(x)=f(g(x)) 

(I) The SL-axioms for the circles , -, |. 
(II)  
(Sg1) p ° p   f


f

 = 1 (the identity function  

       on V) 

The "symmetry"  f


 is an involution.  

(Sg2) - -p ° -p  f-
f-

 = f-
 



(Sg2') | |p ° |p  f
|
f

|
 = f

| 

Both projections  f-
, f

| are idempotent transformations of the square. In 
fact (Sg2') follows from (Sg1), (Sg2), (Sg3). 

(Sg3)  -p ° |p  f-
f

 = f

| 

(Sg4) -p ° -p  f

f-

= f- 

In Segerberg squares (Sg4) means that the image of  f-
 consists of self-

symmetric points (or: every diagonal point is self-symmetric). But in the 
general case not all self-symmetric points are in  f-

[V]. 
(Sg3), (Sg4) imply that  

f

f-

f

 = f

|
, i.e., the involution f


 conjugates the projections  f-

 and f
|
. 

 (Sg3) shows that  | is expressible in terms of , -. It also 
implies that  
f-

[V]= f
|
[V]. 

(Sg4') |p ° |p  f
|
f

 = f

| 

This conjugate of (Sg4) is derivable from (Sg1), (Sg3), (Sg4). 

(Sg5)  -ip ° |ip aRi1b Þ f

(a)Ri2f(b) 



(Sg5)  -ip ° |ip aRi1b Þ f

(a)Ri2f(b) 

Symmetry is an isomorphism between Ri1 and Ri2 

(Sg6) - -i( |ip  |p) f -
(a)Ri1b  bRi2f |

(b) 

If (y,y)Ri1(x,y) (i.e. yRix), then (x,y)Ri2(x,x). 

(Sg7) -p  -i -p  aRi1b  f -
(a) = f -

(b) 
Horizontally accessible points are in the same horizontal row.   

 (Sg8) |i æ ° - |i æ (Áb aRi2b) Þ (Áb f-
(a)Ri2b)   

Vertical seriality is equivalent for (y,y) and (x,y).  
The conjugates of  (Sg6)-(Sg8) are derivable, so they are not 
written here. 
Def.  For a modal logic ñ, put 

[ñ, ñ] :=  
[ñ, ñ] + SL*SL*SL (for , -, |) + {(Sg1),..., (Sg8)}. 

Def. A universal Horn sentence is a first order sentence of the 

form  Úx¾(Ä(x,y,z)¢R(x,y)), 



where Ä is positive,  R(x,y) is atomic. 



Modal formulas corresponding to such sentences are conjunctions  

of formulas of the form 

(◊…◊)p¢(…)p 

 

Def. A modal logic is Horn axiomatizable if it is axiomatizable 

by formulas that are either variable-free or correspond to universal 

Horn sentences. 

 

Completeness theorem for products [Gabbay,Sh 1998] 

If L1, L2 are Horn axiomatizable, then they are product-
matching. 
Theorem 1 (Completeness)  If a logic ñ is Horn 
axiomatizable, then ñ2=[ñ, ñ] 



Remark Segerberg himself axiomatized the logic B of all 
frames of the form (W,WW) 2. In this case (Sg8) becomes 
trivial and (Sg6) should be replaced with a stronger axiom: 
|p  |p. So Segerberg's logic is not a Segerberg square in 
our sense; it is a proper extension of S52. 
Sketch of the proof of Theorem 1  
Step 1. (Kn)2=[Kn, Kn] 

Consider the case n=1. The logic L:= [K, K] is 
Sahhqvist, so it has the countable frame property, so it its 
determined by countable rooted L-frames.  Let  

F=(W,R1,R2, f,f -
,f

|
) be such a frame. 

Now the goal is to construct a p-morphism from a 
Segerberg square onto F. We use a "rectification game" 
similar to the one described in [Sh 2005] and originally 
motivated by the games from [Many-dimensional modal 
logics, 2003] and [Relation algebras by games, 2002]. 



  
Let Tω =  (ω*,<)  be the standard countable intransitive 

irreflexive tree, where 
ω*  is  the  set  of  all  finite  sequences  in  ω;  
α  <  β  iff n β  = αn. 
Let Tω + Tω be the disjoint union of its two copies:  
{xα  | αω*}   {yα  | αω*}  with  the  relation  <. 

Consider the product frame 
 (Tω + Tω) 2 =((ω*+ω*)2,S1,S2). 

A network  over F is a partial function from  (Tω + Tω) 2 to F 
 h: N  V 
such that 
 dom(h)=N is symmetric:  
§

[N]=N,  

§-
[N]  N. 

  N does not have gaps: 



(α,β)N & (α,γ)N & β<+γ  &  β< β' (α,β')N 
(<+ is the transitive closure of <) 
  h is monotonic: 

aSib  h(a)Rih(b), 
h(§


(a))= f


(h(a)), 

h(§-
(a))= f-(h(a)). 

The game between A and E constructs a countable 
increasing sequence of networks  h0h1... 
according to the following rules. 
1. N0={(x,y),(y,x),(x,x),(y,y)}, where  

h0(x,y)=u0, the root of F; then h0(y,x), h0(x,x), h0(y,y) 
are uniquely determined. 
Remark. If u0 is self-symmetric, we don't need two copies, 
the game can start from N0={(,)}, where  is empty. 
2. The (n+1)th move of A is of two types 
Lift enquiry (a,u,j,v), where aNn, u=hn(a), uRjv 



 
The response of E must be a network hn+1 extending hn ch 
that bNn+1(aSjb &   
 

 
 

 
 
 
 

THE FINITE MODEL PROPERTY 

Def. A QT-formula is a modal formula of the form 

ip¢i
kp (generalized transitivity)  

or 

  ◊iip¢p (symmetry) 



A QTC-logic is axiomatizable by formulas that are either 

variable-free or QT-formulas. 

Notation  Kn is the minimal  n-temporal logic  

(axiomatized by ◊-1
i ip¢p, ◊i

-1
i p¢p)  

 

The fmp for products [Sh 2005] 

If L2 is a QTC-logic, then KnL2 = [Kn,L2 ]  has the fmp. 
 

Theorem 2  (Kn)
2 has the fmp. 

 
Conjecture  (Kn)

2 has the fmp.



THE PRODUCT FMP FOR SEGERBERG SQUARES 
Def A logic ñ2 has the product fmp if it is determined by 
finite Segerberg squares: 

ñ2= L({F2 | F is finite, F¼ñ}). 
The product fmp for products [Gabbay, Sh 2002] 
Every logic Kn  Km has the product fmp. 
 

Theorem 3  (Kn)
2 has the product fmp. 

 
 

Conjecture  (Kn)
2 has the product fmp. 
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Ideas for the proofs  of Theorems 1,2,3. 
Relation algebras 
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