Products of modal logics

Valentin Shehtman
Institute for Information Transmission Problems
\& Moscow State University
\& Higher Scool of Economics

Malcev readings, Novosibirsk
November 13, 2013

- In the early days of modal logic (before 1980s) there was interest in studying multiple particular systems.
Contemporary modal logic also investigates classes of logics and general constructions combining different systems.
- Products were introduced in the 1970 s; their intensive study started in the 1990s.

Motivations for studying products of modal propositional logics

- A natural type of combined modal logics
- Connection to first-order classical logic
- Connection to first-order modal logics
- Connection to relation algebras
- Connection to description logics

The main reference for products (BOOK03)
D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Many-dimensional

Modal Logics: Theory and Applications. Elsevier, 2003.

PRODUCTS OF FRAMES

Kripke n -frames: ($\mathrm{W}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}$) (relational system with n binary relations).
Def. The product of two Kripke frames
$\left(W, R_{1}, \ldots, R_{n}\right) \times\left(V, S_{1}, \ldots, S_{m}\right):=\left(W \times V, R_{11}, \ldots, R_{n 1}, S_{12}, \ldots, S_{m 2}\right)$
where
$\left(x_{1}, y_{1}\right) R_{i 1}\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1} R_{i} x_{2} \& y_{1}=y_{2}$
$\left(x_{1}, y_{1}\right) S_{j 2}\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}=x_{2} \& y_{1} S_{j} y_{2}$

Multiple products $\mathrm{F}_{1} \times \ldots \times \mathrm{F}_{\mathrm{n}}$ are defined in an obvious way. The multiplication is associative up to isomorphism.

PRODUCTS OF MODAL LOGICS

Normal n-modal logics are defined us usual - as sets of modal formulas in the propositional language with unary modal connectives $\square_{1}, \ldots, \square_{\mathrm{n}}$ containing the minimal logic and closed under standard rules.
Every Kripke frame is associated with a modal logic - the set of all valid formulas:

$$
\mathrm{L}(\mathrm{~F}):=\{\mathrm{A}|\mathrm{~F}|=\mathrm{A}\} .
$$

Logics of this form are called (Kripke) complete. If F is finite, $L(F)$ is called tabular.
For a class of frames C

$$
\mathbf{L}(C):=\cap\{\mathbf{L}(\mathrm{F}) \mid \mathrm{F} \in C\} .
$$

If all frames in C are finite, $\mathrm{L}(C)$ has the finite model property (fmp).

A modal logic L defines the class of L-frames

$$
\mathrm{V}(\mathrm{~L}):=\{\mathrm{F}|\mathrm{~F}|=\mathrm{L}\} .
$$

L is called elementary if $\mathrm{V}(\mathrm{L})$ is an elementary (first-order definable) class in the classical sense. Remark L is complete iff $L=L(\mathbf{V}(\mathrm{~L}))$.
\mathbf{K}_{n} is the minimal n -modal $\operatorname{logic,} \mathbf{K}=\mathbf{K}_{1}$.
$\mathbf{K} . \mathbf{t}_{n}$ is the minimal n-temporal logic, $\mathbf{K} . \mathbf{t}=\mathbf{K} . \mathbf{t}_{1}$.
$\mathbf{K} . \mathbf{t}_{n}$-frames are ($\left.W, R_{1},\left(R_{1}\right)^{-1}, \ldots, R_{n},\left(R_{n}\right)^{-1}\right)$.
$\mathbf{T}=\mathbf{K}+\square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}$ (all reflexive frames)
$\mathbf{K 4}=\mathbf{K}+\square \mathrm{p} \rightarrow \square \square \mathrm{p}=\mathbf{L}$ (all transitive frames)
$\mathbf{S 4}=\mathbf{K 4}+\square \mathrm{p} \rightarrow \mathrm{p}=\mathbf{L}$ (all transitive reflexive frames) .
$\mathbf{K 4 . 3}$ = L(all transitive non-branching frames)
$=\mathbf{L}$ (all strict linear orders)
S4.3 = K4.3+ $\mathbf{~} \mathbf{p} \rightarrow \mathrm{p}=\mathbf{L}$ (all linear orders)
$\mathbf{S 5}=\mathbf{S 4 +}\rangle \square p \rightarrow p=\mathbf{L}($ all equivalence frames)
= L(all universal frames)
Grz = L(all finite posets)
$\mathbf{G L}=\mathbf{L}$ (all strict finite posets)
$\mathbf{G r z 3}=\mathbf{L}($ all finite chains)
$\mathbf{G L 3}=\mathbf{L}($ all strict finite chains)

Def. The product of two modal logics

$$
\mathrm{L}_{1} \times \mathrm{L}_{2}:=\mathrm{L}\left(\left\{\mathrm{~F}_{1} \times \mathrm{F}_{2} \mid \mathrm{F}_{1} \vDash \mathrm{~L}_{1}, \mathrm{~F}_{2}=\mathrm{L}_{2}\right\} .\right.
$$

Similarly we can define multiple products

$$
\mathrm{L}_{1} \times \ldots \times \mathrm{L}_{\mathrm{n}}:=\mathrm{L}\left(\left\{\mathrm{~F}_{1} \times \ldots \times \mathrm{F}_{\mathrm{n}} \mid \mathrm{F}_{1}=\mathrm{L}_{1}, \ldots, \mathrm{~F}_{\mathrm{n}}=\mathrm{L}_{\mathrm{n}}\right\} .\right.
$$

However, multiplication of logics is probably non-associative (an open problem).

AXIOMATIZATION: FIRST RESULTS

AXIOMATIZATION PROBLEM: to find axioms of $\mathrm{L}_{1} \times \ldots \times \mathrm{L}_{\mathrm{n}}$ given the axioms of $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{n}}$.

Theorem 1 (Sh 1987, Gabbay\&Sh 1998)
Classes of frames $C_{1}, \ldots, C_{\mathrm{n}}$ are elementary $\Rightarrow \mathrm{L}\left(C_{1} \times \ldots \times C_{\mathrm{n}}\right)$ is RE.
(So, L_{1}, \ldots, L_{n} are Kripke complete and elementary $\Rightarrow L_{1} \times \ldots \times L_{n}$ is $R E$.
Corollary 1.1 (Sh 1987) $\mathrm{L}\left((\mathbf{Q},<)^{2}\right), \mathrm{L}\left((\mathbf{Q}, \leq)^{2}\right)$ are RE.

Def. The fusion of two modal logics with disjoint modalities

$$
\mathrm{L}_{1} * \mathrm{~L}_{2}:=\text { the smallest logic containing } \mathrm{L}_{1} \cup \mathrm{~L}_{2}
$$

Remarks on fusions

Fusion of logics preserves many properties:
Theorem 2 (Kracht\&Wolter 1991, Fine\&Schurz 1996) Fusion preserves Kripke completeness, the fmp, decidability.

Bad news: products do not preserve any of these properties. Good news: sometimes they still do.
Def. The commutative join of two modal logics with disjoint modalities
$\square_{\mathrm{i}}(1 \leq \mathrm{i} \leq \mathrm{n}), \boldsymbol{\square}_{\mathrm{k}}(1 \leq \mathrm{j} \leq \mathrm{m})$
is
$\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]:=\mathrm{L}_{1} * \mathrm{~L}_{2}+$
$\left.\diamond_{i} \square_{k} p \rightarrow \square_{k}\right\rangle_{i} p+\square_{i} \varpi_{k} p \leftrightarrow \square_{k} \square_{i} p \quad$ for any i, k

Remark. If the modalities are not disjoint, we rename them.
The additional axioms are Sahlqvist formulas expressing the following properties of the relations in the product frame

$$
\left(R_{i 1}\right)^{-1} \circ S_{k 2} \subseteq S_{k 2} \circ\left(R_{i 1}\right)^{-1} \text { (Church - Rosser property) }
$$

$\mathrm{R}_{i 1} \circ \mathrm{~S}_{\mathrm{k} 2}=\mathrm{S}_{\mathrm{k} 2} \circ \mathrm{R}_{\mathrm{i} 1}$ (commutativity)

Def. $\mathrm{L}_{1}, \mathrm{~L}_{2}$ are product matching if $\left[\mathrm{L}_{1}, \mathrm{~L}_{2}\right]=\mathrm{L}_{1} \times \mathrm{L}_{2}$

Def. A Horn sentence is a universal first order sentence of the form

$$
\forall x \ldots(\varphi(\mathrm{x}, \mathrm{y}, \mathrm{z}) \rightarrow \mathrm{R}(\mathrm{x}, \mathrm{y})),
$$

where φ is positive, $R(x, y)$ is atomic.
A modal formula A is Horn if it corresponds to a Horn sentence (i.e., the class of its frames $\mathbf{V}(A)$ is definable by a Horn sentence).

Example Modal formulas of the form $(\diamond \ldots \diamond) \square \mathrm{p} \rightarrow(\square . . . \square) \mathrm{p}$

correspond to Horn sentences

Logics with such axioms are always complete.
Def. A modal logic is Horn axiomatizable if it is axiomatizable by formulas that are either variable-free or Horn.

Completeness theorem for products
([Gabbay, Sh 1998]<< [BOOK03])
Theorem 3 If L_{1}, L_{2} are Kripke complete and Horn axiomatizable, then they are product matching.

Counterexamples

Theorem 4 [Sh 1987 \ll Gabbay,Sh 1998]
Let \mathbf{L} be a nontrivial 1-modal logic containing $\mathbf{G r z}$. Then \mathbf{L} and $\mathbf{S 5}$ are not product-matching.
Theorem 5 [Kurucz \& Marcelino 2011]
K4.3 and S5, S4.3 and S5 are not product-matching.

Stornger counterexamples: finite axiomatizability is not preserved (see later)

FMP AND PRODUCT FMP

Def. A QTC-logic is axiomatizable by variable-free formulas and formulas or axioms of the form $\widehat{V}_{i} \square_{j} p \rightarrow p, \square_{i} p \rightarrow\left(\square_{i}\right)^{k} p$.

Theorem 6 [Sh 2005] If L_{2} is a QTC-logic, then
$\mathrm{K} . \mathrm{t}_{\mathrm{n}} \times \mathrm{L}_{2}=\left[\mathrm{K} . \mathrm{t}_{\mathrm{n}}, \mathrm{L}_{2}\right]$ has the fmp.
Theorem 7 [Sh 2011] (K. $\left.\mathrm{t}_{\mathrm{n}}\right)^{2}=\left[\right.$ K. $\left.\mathrm{t}_{\mathrm{n}}, \mathrm{K} . \mathrm{t}_{\mathrm{n}}\right]$ has the product fmp.

THE LACK OF RECURSIVE AXIOMATIZATION

(Reynolds\&Zakharyaschev 2001<< BOOKO3)
Theorem 8 (a) If C_{1}, C_{2} are classes of $\mathbf{K} 4.3$-frames containing
some frames with descending ω-chains and every frame in is Dedekind-complete (i.e., every bounded set has supremum), then
$\mathrm{L}\left(C_{1} \times C_{2}\right)$ is Π_{1}^{1}-hard.
(b) If C_{1}, C_{2} are classes of K4.3-frames containing some frames
with ascending ω-chains and every frame in G_{1} is Dedekind-
complete, then $\mathrm{L}\left(C_{1} \times C_{2}\right)$ is \prod_{1}^{1}-hard.
Corollary 8.1 GL3 ${ }^{2}$, $\mathbf{G r z 3}^{2}$, GL3 $\times \mathbf{G r z 3}$ are Π_{1}^{1}-hard.
Thus products do not preserve any interesting property of modal logics.

Corollary 8.2 $\mathbf{L}(F \times G)$ is \prod_{1}^{1}-hard whenever F is \mathbf{R} or ω, F is \mathbf{Q}, \mathbf{R} or ω (with < or \leq).
Theorem 9 If C_{1}, C_{2} are classes of finite [strict] linear orders of
unbounded length, then $\mathrm{L}\left(C_{1} \times C_{2}\right)$ is Π_{1}^{0}-complete.
Corollary 9.1 $\mathbf{L}\left((\omega,>)^{2}\right), \mathbf{L}\left((\omega, \geq)^{2}\right)$ are Π_{1}^{0}-complete.

PRODUCTS WITH TABULAR LOGICS

Theorem 10 (Sh 2013) (1) If L_{1} has the fmp and L_{2} is tabular, then
$\mathrm{L}_{1} \times \mathrm{L}_{2}$ has the product fmp.
(2) If L_{1} is decidable, L_{2} is tabular, then $L_{1} \times L_{2}$ is decidable.

TRANSLATION INTO MODAL PREDICATE LOGIC

Consider n-modal predicate formulas with arbitrary predicates, but without equality, constants and function symbols.

Kripke frame semantics with constant domains

Propositional Kripke frames: $\mathrm{F}=\left(\mathrm{W}, \mathrm{R}_{1}, \ldots, \mathrm{R}_{\mathrm{n}}\right)$
Predicate Kripke frames with constant domains:
$\Phi=(F, D)$, where D is nonempty.
F is the frame of worlds of Φ, D is the set of individuals.
Kripke models over Φ :
$M=(\Phi, V)$, where V is a valuation:
$\mathrm{V}(\mathrm{P}) \subseteq \mathrm{D}^{\mathrm{n}} \times \mathrm{W}$ for every n -ary predicate letter P ,
For every formula $A\left(x_{1}, \ldots, x_{n}\right)$ and $d_{i} \in D$ we construct a D-sentence $A\left(d_{1}, \ldots, d_{n}\right)$
Forcing relation $\mathrm{M}, \mathrm{u} \vDash \mathrm{B}$ between $\mathrm{u} \in \mathrm{W}$ and a D -sentence B
is defined by induction, in particular:

- $M, u \vDash P\left(d_{1}, \ldots, d_{n}\right)$ iff $\left(d_{1}, \ldots, d_{n}, u\right) \in V(P)$
- $M, u \vDash \square_{i} B \quad$ iff $\quad \forall v \in R_{i}(u) M, v \vDash B$
- $M, u \vDash \forall x B$ iff $\quad \forall d \in D M, u \vDash[d / x] B$

Def $M \vDash A\left(x_{1}, \ldots, x_{n}\right)$ iff $\forall u \in W M, u \vDash \forall x_{1} \ldots \forall x_{n} A\left(x_{1}, \ldots, x_{n}\right)$
(validity in a frame) $\Phi \vDash$ A iff for any M over $\Phi, \mathrm{M} \vDash \mathrm{A}$ $\mathrm{L}(\Phi):=\{\mathrm{A} \mid \Phi \vDash \mathrm{A}\}$ is the modal predicate logic of Φ.

Wajsberg-type translation

Wajsberg's translation interprets S5 in classical first-order logic. Similarly,
every propositional (n+1)-formula A (with modalities $\square_{1}, \ldots, \square_{n},[\forall]$) is translated into
a first-order n-modal formula $A^{\#}(y)$ with (maybe) a parameter y :

Every $\mathrm{q} \in \mathrm{PV}$ is associated with a unary predicate letter Q . Then

$$
\mathrm{q}^{\#}(\mathrm{y}):=\mathrm{Q}(\mathrm{y})(\text { for } \mathrm{q} \in \mathrm{PV})
$$

$$
\perp^{\#}(y):=\perp
$$

$$
(A \rightarrow B)^{\#}(y):=A^{\#}(y) \rightarrow B^{\#}(y)
$$

$$
\left(\square_{i} A\right)^{\#}(y):=\square_{i} A^{\#}(y)
$$

$$
([\forall] A)^{\#}(y):=\forall y A^{\#}(y)
$$

Lemma $F \times(D, D \times D) \vDash A$ iff $(F, D) \vDash \forall y A^{\#}(y)$

Theorem 11 Let L_{1} be an n-modal propositional logic, $C K\left(L_{1}\right)$ the class of all predicate Kripke frames (F,D), with $F \vDash \mathrm{~L}_{1}$.
Consider the corresponding predicate modal logic $\mathbf{L}\left(\mathrm{CK}\left(\mathrm{L}_{1}\right)\right)$. Then $\mathrm{L}_{1} \times \mathbf{S 5}$ is (polynomially) reducible to $\mathbf{L}\left(\mathrm{CK}\left(\mathrm{L}_{1}\right)\right)$: for any ($\mathrm{n}+1$)-modal propositional A

$$
\mathrm{L}_{1} \times \mathbf{S} \mathbf{5} \text { ト } \mathrm{A} \text { iff } \forall y \mathrm{~A}^{\#}(\mathrm{y}) \in \mathbf{L}\left(\mathrm{CK}\left(\mathrm{~L}_{1}\right)\right)
$$

(In other words, $L_{1} \times \mathbf{S} 5$ specifies a fragment within $\mathbf{L}\left(C K\left(L_{1}\right)\right.$)
Completeness theorems for modal predicate logics yield a standard axiomatization of $\mathrm{L}\left(\mathrm{CK}\left(\mathrm{L}_{1}\right)\right)$ in some cases. QL_{1} is the pure quantified version of $\mathrm{L}_{1}, \mathrm{BF}$ is the conjunction of Barcan schema for all modalities:

$$
\forall \mathrm{x} \square_{\mathrm{i}} \mathrm{~A} \rightarrow \square_{\mathrm{i}} \forall \mathrm{xA} .
$$

Theorem 12 (1) (Tanaka\&Ono, 1999) If L_{1} is complete and $\mathbf{V}\left(L_{1}\right)$ is universally axiomatizable (in the classical sense), then

$$
\mathbf{L}\left(\mathrm{CK}\left(\mathrm{~L}_{1}\right)\right)=\mathrm{QL}_{1}+\mathrm{BF}
$$

(2) (Ono, $1983 \ll$ Gabbay\&Skvorstov\&Shehtman, 2009)

The same holds if L_{1} is tabular.
In all these cases $L_{1} \times \mathbf{S} 5$ is RE, but now from Theorems $11,12,3$ we obtain
Corollary $12.1\left[\mathrm{~L}_{1}, \mathbf{S} 5\right] \vdash \mathrm{A}$ iff $\mathrm{QL}_{1}+\mathrm{BF} \mid \forall \mathrm{yA}^{\#}(\mathrm{y})$
whenever L_{1} is Horn axiomatizable.

TRANSLATION INTO CLASSICAL PREDICATE LOGIC

This "square translation" resembles the well-known standard translation of modal formulas in the language of
$\left(\mathbf{K}_{\mathrm{n}}\right)^{2}$ into classical first-order formulas with relativized quantifiers. Consider the first order language with binary predicate letters $R_{1}, \ldots R_{n}, P_{1}, P_{2} \ldots$ We associate a binary predicate letter P_{i} with every proposition letter p_{i}.

$$
\begin{aligned}
& \left(p_{i}\right)^{2}(x, y):=P_{i}(x, y) \\
& (A \rightarrow B)^{2}(x, y):=A^{2}(x, y) \rightarrow B^{2}(x, y) \\
& \perp^{2}(x, y):=\perp \\
& \left(\square_{i} A\right)^{2}(x, y):=\forall z\left(R_{i}(x, z) \rightarrow A^{2}(z, y)\right) \\
& \left(\square_{i} A\right)^{2}(x, y):=\forall z\left(R_{i}(y, z) \rightarrow A^{2}(x, z)\right)
\end{aligned}
$$

Theorem 13 If L is an elementary modal logic, φ (first-order) axiomatizes $\mathbf{V}(\mathrm{L})$, then
(1) $\quad \mathrm{QCL}+\varphi \mid \forall \mathrm{x} \forall y \mathrm{~A}^{2}(\mathrm{x}, \mathrm{y})$ iff $\mathrm{L}^{2} \vdash \mathrm{~A}$.
(Here QCL is the classical first-order theory axiomatized by φ).
(2) If L^{2} has the product fmp, then the corresponding "square fragment" of QCL $+\varphi$ with binary predicates has the fmp (in the classical sense).

Axiomatizing some products of non-product-matching logics

Def. A propositional modal logic L is called locally tabular if, up to equivalence in L, for any m there are finitely many formulas in m propositional variables.
It is well-known that every locally tabular logic has the fmp.
Def. A propositional 1-modal logic L above K4 is of finite depth < m if all L-frames are of depth $<\mathrm{m}$.
L is of depth m if it is of depth $<m+1$, but not $<m$.
Theorem 14(Segerberg, 1971) Every logic of finite depth is locally tabular.
Theorem 15 (Maksimova, 1974) The converse holds for extension of K4
Theorem 16 (Sh 2010) If L is of finite depth, then $[\omega, \mathbf{S} 5]$ is locally tabular.
This allows us to axiomatize products of finite depth logics above $\mathbf{G r z}$ with $\mathbf{S 5}$ in two ultimate cases: the catkin formula ACk is
exactly what is missing. ACk is the Fine - Jankov formula of the following 2-frame (catkin):

Theorem 17 (Sh 2010) If $\mathrm{L}=\mathbf{G r z +}$ Adepth $\mathrm{n}_{\mathrm{n}}(=\mathbf{L}($ all posets of depth n$)$) or
$\mathrm{L}=\mathbf{G r z 3}+$ Adepth $_{\mathrm{n}}$ (= \mathbf{L} (all chains of depth n$)$), then $\mathrm{L} \times$ S5 $=[\mathrm{L}, \mathrm{S} 5]+$ ACk.
Corollary 17.1 These logics are decidable.

References
[GSS09] D. Gabbay, D. Skvortsov, V. Shehtman. Quantification in Nonclassical Logic, Volume 1. Elsevier, 2009.
[GKWZ03] D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev.
Many-dimensional Modal Logics: Theory and Applications. Elsevier, 2003.
[Sano10] K. Sano. Axiomatizing hybrid products: How can we reason many-dimensionally in hybrid logic? J. Applied Logic, v.8, 2010, pp. 459-474.
====================
Theorem [Kurucz \& Marcelino 2011]
K4.3×K, S4.3×K are not even axiomatizable in finitely many variables

QUESTION. Are the logics
$\mathbf{K 4 . 3} \times \mathbf{S 5}$, S4.3 $\times \mathbf{S 5}$
finitely axiomatizable?

Squares of modal logics with additional connectives

Valentin Shehtman
Institute for Information Transmission Problems
\& Moscow State University
\& Laboratory Poncelet

London, February 2011

PRODUCTS

Def. The product of two Kripke frames
$\left(W, R_{1}, \ldots, R_{n}\right) \times\left(V, S_{1}, \ldots, S_{m}\right):=$ $\left(W \times V, R_{11}, \ldots, R_{n 1}, S_{12}, \ldots, S_{m 2}\right)$,
where

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right) R_{i 1}\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1} R_{i} x_{2} \& y_{1}=y_{2} \\
& \left(x_{1}, y_{1}\right) S_{j 2}\left(x_{2}, y_{2}\right) \Leftrightarrow x_{1}=x_{2} \& y_{1} S_{j} y_{2}
\end{aligned}
$$

Def. The product of two modal logics

$$
L_{1} \times L_{2}=L\left(\left\{F_{1} \times F_{2} \mid F_{1} \models L_{1}, F_{2} \models L_{2}\right\}\right)
$$

AXIOMATIZATION PROBLEM: to find axioms of $L_{1} \times L_{2}$ given the axioms of L_{1}, L_{2}
Def. The fusion of two modal logics with disjoint modalities $L_{1} * L_{2}:=$ the smallest logic containing $L_{1} \cup L_{2}$
Def. The commutative join of two modal logics with disjoint modalities
$\square_{i}(1 \leqslant i \leqslant n), \quad \square_{j} \quad(1 \leqslant j \leqslant m)$

$$
\left[L_{1}, L_{2}\right]:=L_{1} * L_{2}+\vartheta_{i} \square_{k} p \rightarrow \Phi_{k} \vartheta_{i} p+\square_{i} \Phi_{k} p \leftrightarrow \Phi_{k} \square_{i} p
$$

for any i, k

Remark. If the modalities are not disjoint, we can change them.
These are Salqvist formulas expressing the following properties of the relations in the product frame

$$
\ominus_{i} \square_{k} p \rightarrow \Phi_{k} \ominus_{i} p:
$$

$$
\left(R_{\mathrm{i} 1}\right)^{-1} \circ S_{\mathrm{k} 2} \subseteq \mathrm{~S}_{\mathrm{k} 2} \circ\left(\mathbf{R}_{\mathrm{i} 1}\right)^{-1} \text { (Church - Rosser property) }
$$

$\square_{i} \square_{k} p \leftrightarrow \square_{k} \square_{i} p:$

$$
\mathrm{R}_{\mathrm{i} 1} \circ \mathrm{~S}_{\mathrm{k} 2}=\mathrm{S}_{\mathrm{k} 2} \circ \mathrm{R}_{\mathrm{i} 1} \text { (commutativity) }
$$

Def. L_{1}, L_{2} are product-matching if $L_{1} \times L_{2}=\left[L_{1}, L_{2}\right]$

SQUARES

For a class of frames C put

$$
C^{2}:=\{F \times F \mid F \in C\} .
$$

For a modal logic Λ put

$$
\Lambda^{2}:=\Lambda \times \Lambda
$$

Proposition 1 [Gabbay,Sh 2000]

$$
\Lambda^{2}=L(\{F \times F \mid F \vDash \Lambda\}) .
$$

("Squares of logics are determined by squares of frames".)
Proposition 2 [Gabbay,Sh 2000]
$\mathrm{L}_{1} \times \mathrm{L}_{2}$ is embeddable in $\left(\mathrm{L}_{1} * \mathrm{~L}_{2}\right)^{2}$.
("Products are reducible to squares".)

SEGERBERG SQUARES

These are square frames with additional functions. Krister Segerberg (1973) studied a special type - squares of frames with the universal relation.
He considered the following functions on squares.

$$
\begin{aligned}
& \sigma_{0}: \quad(\mathrm{x}, \mathrm{y}) \mapsto(\mathrm{y}, \mathrm{x}) \quad \text { (diagonal symmetry) } \\
& \sigma_{\ominus}:(\mathrm{x}, \mathrm{y}) \mapsto(\mathrm{y}, \mathrm{y}) \quad \text { (the first diagonal projection) } \\
& \sigma_{\odot}:(\mathrm{x}, \mathrm{y}) \mapsto(\mathrm{x}, \mathrm{x}) \quad \text { (the second diagonal projection) }
\end{aligned}
$$

These functions can be associated with extra modal operators \bigcirc, Θ, \oplus. So in square frames they are interpreted as follows:

$$
\begin{array}{lll}
(x, y) \vDash O A & \text { iff } & (y, x) \vDash A \\
(x, y) \vDash \ominus A & \text { iff } & (x, x) \vDash A \\
(x, y) \vDash \oplus A & \text { iff } & (y, y) \vDash A
\end{array}
$$

Remark. Segerberg used the notation \otimes instead of O.

Formally we define the Segerberg square of a frame

$$
\mathrm{F}=\left(\mathbf{W}, \mathbf{R}_{1}, \ldots, \mathbf{R}_{\mathrm{n}}\right) \text { as the }(2 \mathrm{n}+3) \text {-frame }
$$

$$
F^{2 \oplus}:=\left(F^{2}, \sigma_{0}, \sigma_{\ominus}, \sigma_{\odot}\right)\left(\text { where } \sigma_{0}, \sigma_{\ominus}, \sigma_{\odot}\right. \text { are the }
$$

functions on \mathbf{W}^{2} described above).
Respectively, the Segerberg square of an n-modal logic Λ is defined the logic of the Segerberg squares of its frames

$$
\Lambda^{2 \oplus}:=\mathrm{L}\left(\left\{\mathrm{~F}^{2 \oplus} \mid \mathrm{F} \vDash \Lambda\right\}\right) .
$$

TOMORROW (OR SUCCESSOR) LOGIC

$$
\mathbf{S L}:=K+\nabla_{\mathbf{p}} \leftrightarrow \square \mathbf{p}
$$

(an equivalent form: $\mathbf{K}+\neg \square \mathbf{p} \leftrightarrow \square \neg \mathbf{p}$)
This well-known logic is also due to Segerberg (1967). It is complete w.r.t. the frame

(the successor relation on natural numbers).

Every logic of a frame with a functional accessibility relation is an extension of $\mathbf{S L}$.

AXIOMATIZING SEGERBERG SQUARES

Soundness Every Segerberg square validates the following formulas
The corresponding semantic conditions for an arbitrary ($2 \mathrm{n}+3$)-frame
$\left(\mathrm{V}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}, \mathbf{f}_{\mathrm{o}}, \mathbf{f}_{\ominus}, \mathbf{f}_{\phi}\right)$
are in the right column; here fg denotes the composition of functions: $(\mathrm{fg})(\mathrm{x})=\mathrm{f}(\mathrm{g}(\mathrm{x}))$
(I) The SL-axioms for the circles \bigcirc, Θ, \oplus. (II)
(Sg1) $O O p \leftrightarrow p \quad f_{\circ} f_{o}=1$ (the identity function on V)

The "symmetry" f_{o} is an involution.

$$
(\mathrm{Sg} 2) \Theta \Theta \mathbf{p} \leftrightarrow \Theta \mathbf{p} \quad \mathbf{f}_{\ominus} \mathbf{f}_{\ominus}=\mathbf{f}_{\ominus}
$$

(Sg2') $\oplus \oplus p \leftrightarrow \oplus \mathbf{p} \quad \mathbf{f}_{\Phi} \mathbf{f}_{\Phi}=\mathbf{f}_{\oplus}$
Both projections $\mathbf{f}_{\ominus}, \mathbf{f}_{\Phi}$ are idempotent transformations of the square. In fact (Sg 2 ') follows from (Sg 1), (Sg 2), (Sg 3).

$$
\begin{aligned}
& \text { (Sg3) } O \Theta p \leftrightarrow \oplus p \quad \mathbf{f}_{\odot} \mathbf{f}_{\circ}=\mathbf{f}_{\odot} \\
& \text { (Sg4) } \Theta O p \leftrightarrow \Theta p \quad f_{o} f_{\Theta}=f_{\odot}
\end{aligned}
$$

In Segerberg squares (Sg 4) means that the image of \mathbf{f}_{\ominus} consists of selfsymmetric points (or: every diagonal point is self-symmetric). But in the general case not all self-symmetric points are in $\mathbf{f}_{\odot}[\mathrm{V}]$.
(Sg3), (Sg4) imply that $\mathbf{f}_{\circ} \mathbf{f}_{\odot} \mathbf{f}_{\circ}=\mathbf{f}_{\odot}$, i.e., the involution \mathbf{f}_{\circ} conjugates the projections \mathbf{f}_{\ominus} and \mathbf{f}_{\odot}.
(Sg3) shows that $(1$ is expressible in terms of \bigcirc, Θ. It also implies that
$\mathbf{f}_{\Theta}[\mathrm{V}]=\mathbf{f}_{\Phi}[\mathrm{V}]$.
(Sg4') $\oplus \bigcirc p \leftrightarrow \oplus p \quad f_{\Phi} f_{\circ}=f_{\oplus}$
This conjugate of (Sg4) is derivable from (Sg1), (Sg3), (Sg4).
(Sg5) $O \square_{i} O p \leftrightarrow \omega_{i} p \quad a R_{i 1} b \Leftrightarrow f_{o}(a) R_{i 2} f_{\circ}(b)$
(Sg5) $O \square_{i} O p \leftrightarrow \Phi_{i} p \quad a R_{i 1} b \Leftrightarrow f_{o}(a) R_{i 2} f_{o}(b)$
Symmetry is an isomorphism between $R_{i 1}$ and $R_{i 2}$
(Sg6) $\Theta \square_{i}\left(\square_{i} p \rightarrow \Phi p\right) f_{\ominus}(a) R_{i 1} b \Rightarrow b R_{i 2} f_{\oplus}(b)$
If $(y, y) R_{i 1}(x, y)\left(i . e . R_{i} x\right)$, then $(x, y) R_{i 2}(x, x)$.

$$
\left(\text { Sg7) } \Theta p \rightarrow \Xi_{i} \ominus p \quad a R_{i 1} b \Rightarrow f_{\ominus}(a)=f_{\ominus}(b)\right.
$$

Horizontally accessible points are in the same horizontal row.
(Sg8) $\mathrm{m}_{\mathrm{i}} \perp \leftrightarrow \Theta \mathrm{m}_{\mathrm{i}} \perp\left(\exists \mathrm{b} a \mathrm{R}_{\mathrm{i} 2} \mathrm{~b}\right) \Leftrightarrow\left(\exists \mathrm{b} \mathrm{f}_{\ominus}(\mathrm{a}) \mathrm{R}_{\mathrm{i} 2} \mathrm{~b}\right)$
Vertical seriality is equivalent for (y, y) and (x, y).
The conjugates of $(\mathrm{Sg} 6)-(\mathrm{Sg} 8)$ are derivable, so they are not written here.
Def. For a modal logic Λ, put

```
[\Lambda, \Lambda] ]}:
[\Lambda, \Lambda] + SL*SL*SL (for O, \Theta, (1) + {(Sg1),\ldots, (Sg8)}.
```

Def. A universal Horn sentence is a first order sentence of the
form

$$
\forall x \ldots(\varphi(x, y, z) \rightarrow R(x, y))
$$

where φ is positive, $R(x, y)$ is atomic.

Modal formulas corresponding to such sentences are conjunctions of formulas of the form

$$
(\diamond \ldots \diamond) \square \mathbf{p} \rightarrow(\square \ldots \square) \mathbf{p}
$$

Def. A modal logic is Horn axiomatizable if it is axiomatizable by formulas that are either variable-free or correspond to universal Horn sentences.

Completeness theorem for products [Gabbay,Sh 1998]
If L_{1}, L_{2} are Horn axiomatizable, then they are productmatching.
Theorem 1 (Completeness) If a logic Λ is Horn
axiomatizable, then $\Lambda^{2 \oplus}=[\Lambda, \Lambda]^{\oplus}$

Remark Segerberg himself axiomatized the logic \mathbf{B} of all frames of the form ($\mathrm{W}, \mathrm{W} \times \mathrm{W}$) ${ }^{2 \boldsymbol{}}$. In this case (Sg 8) becomes trivial and (Sg 6) should be replaced with a stronger axiom:
$\boxplus p \rightarrow \Phi p$. So Segerberg's logic is not a Segerberg square in our sense; it is a proper extension of $\mathbf{S 5}^{2 \boldsymbol{}}$.
Sketch of the proof of Theorem 1
Step 1. $\left(\mathbf{K}_{\mathrm{n}}\right)^{\mathbf{2 \otimes}}=\left[\mathbf{K}_{\mathrm{n}}, \mathbf{K}_{\mathrm{n}}\right]^{\oplus}$
Consider the case $n=1$. The logic $L:=[\mathbf{K}, \mathbf{K}]^{\oplus}$ is Sahhqvist, so it has the countable frame property, so it its determined by countable rooted L -frames. Let
$F=\left(W, R_{1}, R_{2}, f_{0}, f_{\odot}, f_{\phi}\right)$ be such a frame.
Now the goal is to construct a p-morphism from a Segerberg square onto F . We use a "rectification game" similar to the one described in [Sh 2005] and originally motivated by the games from [Many-dimensional modal logics, 2003] and [Relation algebras by games, 2002].

Let $\mathrm{T}_{\omega}=\left(\omega^{*},<\right)$ be the standard countable intransitive irreflexive tree, where
ω^{*} is the set of all finite sequences in ω;
$\alpha<\beta$ iff $\exists \mathrm{n} \in \omega \beta=\alpha \mathrm{n}$.
Let $T_{\omega}+T_{\omega}$ be the disjoint union of its two copies:
$\left\{\mathrm{X} \alpha \mid \alpha \in \omega^{*}\right\} \cup\left\{y \alpha \mid \alpha \in \omega^{*}\right\}$ with the relation $<$.
Consider the product frame

$$
\left(T_{\omega}+T_{\omega}\right)^{2}=\left(\left(\omega^{*}+\omega^{*}\right)^{2}, S_{1}, S_{2}\right)
$$

A network over F is a partial function from $\left(T_{\omega}+T_{\omega}\right)^{2}$ to F $\mathrm{h}: \mathrm{N} \rightarrow \mathrm{V}$
such that

- $\operatorname{dom}(\mathrm{h})=\mathrm{N}$ is symmetric:

$$
\begin{aligned}
& \sigma_{0}[N]=N, \\
& \sigma_{\theta}[N] \subseteq N .
\end{aligned}
$$

- N does not have gaps:
$(\alpha, \beta) \in N \&(\alpha, \gamma) \in N \& \beta<^{+} \gamma \& \beta<\beta^{\prime} \Rightarrow\left(\alpha, \beta^{\prime}\right) \in N$
($<^{+}$is the transitive closure of $<$)
- h is monotonic:

$$
\begin{aligned}
& a S_{i} b \Rightarrow h(a) R_{i} h(b), \\
& h\left(\sigma_{\circ}(a)\right)=f_{\circ}(h(a)), \\
& h\left(\sigma_{\ominus}(a)\right)=f_{\ominus}(h(a)) .
\end{aligned}
$$

The game between \mathbf{A} and \mathbf{E} constructs a countable increasing sequence of networks $h_{0} \subseteq h_{1 \subseteq \ldots}$ according to the following rules.

1. $N_{0}=\{(x, y),(y, x),(x, x),(y, y)\}$, where $h_{0}(x, y)=u_{0}$, the root of F; then $h_{0}(y, x), h_{0}(x, x), h_{0}(y, y)$ are uniquely determined.
Remark. If u_{0} is self-symmetric, we don't need two copies, the game can start from $N_{0}=\{(\lambda, \lambda)\}$, where λ is empty.
2. The $(n+1)$ th move of \mathbf{A} is of two types

Lift enquiry (a, u, j, v), where $a \in N_{n}, u=h_{n}(a), u R_{j} v$

The response of E must be a network h_{n+1} extending h_{n} ch that $\exists b \in N_{n+1}\left(a S_{j} b\right.$ \&

THE FINITE MODEL PROPERTY

Def. A QT-formula is a modal formula of the form
$\square_{i} \mathbf{p} \rightarrow \square_{i}{ }^{k} \mathbf{p}$ (generalized transitivity)
or
$\diamond_{i} \square_{i} p \rightarrow p$ (symmetry)

A QTC-logic is axiomatizable by formulas that are either variable-free or QT-formulas.

Notation $\mathrm{K}_{ \pm n}$ is the minimal n-temporal logic
(axiomatized by $\diamond_{i}^{-1} \square_{i} p \rightarrow p, \diamond_{i} \square_{i}^{-1} p \rightarrow p$)
The fmp for products [Sh 2005]
If \mathbf{L}_{2} is a QTC-logic, then $K_{ \pm n} \times \mathbf{L}_{2}=\left[K_{ \pm n}, \mathbf{L}_{2}\right]$ has the fmp.
Theorem $2\left(K_{n}\right)^{2 \oplus}$ has the fmp.
Conjecture $\left(K_{ \pm n}\right)^{2 \oplus}$ has the fmp.

THE PRODUCT FMP FOR SEGERBERG SQUARES

Def A logic $\Lambda^{2 \oplus}$ has the product fmp if it is determined by finite Segerberg squares:

$$
\Lambda^{2 \oplus}=\mathrm{L}\left(\left\{\mathrm{~F}^{2 \oplus} \mid \mathrm{F} \text { is finite, } \mathrm{F} \vDash \Lambda\right\}\right) .
$$

The product fmp for products [Gabbay, Sh 2002]
Every logic $\mathbf{K}_{ \pm n} \times \mathbf{K}_{m}$ has the product fmp.
Theorem $3\left(K_{n}\right)^{2 \oplus}$ has the product fmp.
Conjecture $\left(\mathrm{K}_{ \pm n}\right)^{2 \oplus}$ has the product fmp.

REFERENCES

- K. Segerberg. Two-dimensional modal logic. Journal of Philosophical Logic, v. 2, pp. 77-96, 1973.
- D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Manydimensional Modal Logics: Theory and Applications. Elsevier, 2003.
- D. Gabbay, V. Shehtman. Products of modal logics, part 1. Logic Journal of the IGPL, v. 6, pp. 73-146, 1998.
- D. Gabbay, V. Shehtman. Products of modal logics, part 2. Logic Journal of the IGPL, v. 8 (2000), pp. 165-210.
- D. Gabbay, V. Shehtman. Products of modal logics, part 3. Logic Studia Logica, v. 72 (2002), pp. 157-183.
- V. Shehtman. Filtration via bisimulation. In: Advances in Modal Logic, Volume 5. King's College Publications, 2005, pp. 289-308.
- S.P. Kikot. On squares of modal logics with the designated diagonal (in Russian). Мат. заметки (Mathematical Notices), 88(2), 261-274 (2010).
- R. Hirsch, I. Hodkinson. Relation algebras by games. Elsevier, 2002.

Ideas for the proofs of Theorems 1,2,3.
Relation algebras
■ ロ
$\triangleleft \otimes$
$\Theta(1)$
\oplus

