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e In the early days of modal logic (before 1980s) there was
interest in studying multiple particular systems.

Contemporary modal logic also investigates classes of logics and
general constructions combining different systemes.

e Products were introduced in the 1970s; their intensive study
started in the 1990s.

Motivations for studying products of modal propositional logics
e A natural type of combined modal logics

e Connection to first-order classical logic
e Connection to first-order modal logics
e Connection to relation algebras

e Connection to description logics

The main reference for products (BOOKO03)

D. Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Many—dimensional
Modal Logics: Theory and Applications. Elsevier, 2003.



PRODUCTS OF FRAMES
Kripke n-frames: (WR,,....R,) (relational system with n binary
relations).
Def. The product of two Kripke frames

(W.R1,....Ry) x (V,S1,....590):= (WxV.Ri1,....Ru1,512,....9m2)
where

(X1,Y1)Ri(X2,Y2) « XiRiX2 & yi=y;

(X1,¥1)Si2 (X2,¥2) < X1=X2 & Y15y2

Multiple products F, x... x F, are defined in an obvious way. The

multiplication is associative up to isomorphism.






PRODUCTS OF MODAL LOGICS

Normal n-modal logics are defined us usual - as sets of modal
formulas in the propositional language with unary modal

connectives [1,,...,[ ], containing the minimal logic and closed

under standard rules.
Every Kripke frame is associated with a modal logic - the set of all
valid formulas:
L(F):= {AIFEA}
Logics of this form are called (Kripke) complete.
If F is finite, L(F) is called tabular.

For a class of frames C
L(C):=N{L{F) I Fe C }.
If all frames in C are finite, L(C ) has the finite model property

(fmp).



A modal logic L defines the class of L-frames
V(L) :={FIFEL}.
L is called elementary if V(L) is an elementary (first-order

definable) class in the classical sense.
Remark L is complete iff L=L(V(L)).




Some particular complete logics

K, is the minimal n-modal logic, K=Kj;.

K.t, is the minimal n-temporal logic, K.t=K.t;.

K.tn -frames are (W,Ry,(R1)%,...,Rn,(Rn) ).

T = K+0Op—>p = L(all reflexive frames)

K4 = K+Op—>00Op = L(all transitive frames)

S4 = K4+Lp—p =L(all transitive reflexive frames).

K4.3 = L(all transitive non-branching frames)
=L(all strict linear orders)

S4.3 = K4.3+[p—p = L(all linear orders)

S5 = S4+O0Op—p = L(all equivalence frames)

=L(all universal frames)
Grz = L(all finite posets)
GL = L(all strict finite posets)
Grz3 = L(all finite chains)
GL3 = L(all strict finite chains)



Def. The product of two modal logics
LixLy:= L{FixF: | Fi FLi ,Fo E L, 3.
Similarly we can define multiple products
Lix...xLo:= L{Fix..xFa | Fi E Ly ..., FaF Lo 3.

However, multiplication of logics is probably non-associative (an open
problem).

AXIOMATIZATION: FIRST RESULTS
AXIOMATIZATION PROBLEM: to find axioms of L,x...xL, given the

axioms of L,,...,L,.
Theorem 1 (Sh 1987, Gabbay&Sh 1998)

Classes of frames (,..., (, are elementary = L((ix..x () is RE.

(So, L,,..., L, are Kripke complete and elementary = L;x...xL, is RE.

Corollary 1.1 (Sh 1987) L((Q <)?),L((Q,=<)?) are RE.



Def. The fusion of two modal logics with disjoint modalities

L,*L, := the smallest logic containing L, UL,

Remarks on fusions
Fusion of logics preserves many properties:
Theorem 2 (Kracht&Wolter 1991, Fine&Schurz 1996) Fusion

preserves Kripke completeness, the fmp, decidability.

Bad news: products do not preserve any of these properties.
Good news: sometimes they still do.

Def. The commutative join of two modal logics with disjoint
modalities

[l (l=si<n), &k (1 =j=m)

1S

[L,,L,] := L*L, +

O;mp—> RO p+0OMp<MWMOp foranyi, k



Remark. If the modalities are not disjoint, we rename them.

The additional axioms are Sahlqgvist formulas expressing the

following properties of the relations in the product frame

(Ri1)* S, < So(Ri1)™! (Church - Rosser property)

Ri1°S = SieR i1 (commutativity)
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Def. L;,L,are product matching if[L,L,] =L, x L,



Def. A Horn sentence is a universal first order sentence of the

form
Vx..(p(xy.z) = R(x.y)),
where g is positive, R(Xx,y) is atomic.
A modal formula A is Horn if it corresponds to a Horn sentence

(i.e., the class of its frames V(A) is definable by a Horn sentence).



Example Modal formulas of the form (<>...<>) p — (O..O)p

correspond to Horn sentences

Logics with such axioms are always complete.
Def. A modal logic is Horn axiomatizable if it is axiomatizable by

formulas that are either variable-free or Horn.

Completeness theorem for products
([Gabbay, Sh 1998]<< [BOOKO03])

Theorem 3 If L, L, are Kripke complete and Horn
axiomatizable, then they are product matching.




Counterexamples
Theorem 4 [Sh 1987 << Gabbay,Sh 1998]

Let L be a nontrivial 1-modal logic containing Grz. Then L and S5
are not product-matching.
Theorem 5 [Kurucz & Marcelino 2011]

K4.3 and S5, S$4.3 and S5 are not product-matching.




Stornger counterexamples: finite axiomatizability is not preserved

(see later)
FMP AND PRODUCT FMP

Def. A QTC-logic is axiomatizable by variable-free formulas and
formulas or axioms of the form ©; O;p—p, O; p—~(0:)p.

Theorem 6 [Sh 2005] If L, is a QTC-logic, then

Kit.xL,=[K.t, L,] has the fmp.

Theorem 7 [Sh 2011] (K.t,)*=[K.t,Kt.] has the product fmp.




THE LACK OF RECURSIVE AXIOMATIZATION
(Reynolds&Zakharyaschev 2001<< BOOKO03)

Theorem 8 (a) If i, (, are classes of K4.3-frames containing

some frames with descending w-chains and every frame in is
Dedekind-complete (i.e., every bounded set has supremum), then

L(Cix(z)is M1 -hard.
(b) If ¢, ¢, are classes of K4.3-frames containing some frames

with ascending w-chains and every frame in (is Dedekind-

complete, then L(Cix () is T } -hard.

Corollary 8.1 GL3?, Grz3?, GL3xGrz3 are I ! -hard.

Thus products do not preserve any interesting property of modal
logics.




Corollary 8.2 L(F xG) is I ! -hard whenever Fis Ror w, Fis Q, R

or w (with < or ).
Theorem 9 If ), (., are classes of finite [strict] linear orders of

unbounded length, then L(Cix () is T1 X -complete.

Corollary 9.1 L((w,>)?), L((w,=)?) are N 0 -complete.

PRODUCTS WITH TABULAR LOGICS
Theorem 10 (Sh 2013) (1) If L, has the fmp and L, is tabular, then

LxI, has the product fmp.

(2) If L, is decidable, L, is tabular, then L,xL,is decidable.



TRANSLATION INTO MODAL PREDICATE LOGIC

Consider n-modal predicate formulas with arbitrary predicates, but
without equality, constants and function symbols.

Kripke frame semantics with constant domains
Propositional Kripke frames: F = (W,Ry,....R))
Predicate Kripke frames with constant domains:
®=(F,D), where D is nonempty.

F is the frame of worlds of ®, D is the set of individuals.
Kripke models over O:
M=(®,V), where V is a valuation:

V(P) € D"xW for every n-ary predicate letter P,
For every formula A(Xy,...,Xn) and d;eD we construct a D-sentence
A(di,...,dn)
Forcing relation M,u F B betweenueW and a D-sentence B
is defined by induction, in particular:
e Mu E P(dy,....dn) iff (di,..., dy,u)eV(P)



e Mu EL[B iff YveRi(u) M,vE B

e Mu F vxB Iiff vde D M,u E [d/x]B

Def M FE A(xi,..., Xy) iff YueWMu F ¥xi... VXoA(X1,..., Xn)
(validity in a frame) ® E A iff for any M over ®, M EA
L(D):={A | ® F A} is the modal predicate logic of ®.

Wajsberg-type translation
Wajsberg's translation interprets S5 in classical first-order logic.
Similarly,
every propositional (n+1)-formula A (with modalities [1+,...,[.1,,[V])

is translated into
a first-order n-modal formula A*(y) with (maybe) a parameter y:



Every qePV is associated with a unary predicate letter Q. Then
q*(y) := Q(y) (for qePV)
17(y) =L
(A—B) *(y):= A*(y) = B*(y)
(O A) *(y):= OiA%(y)
([VIA)*(y) := VyA*(y)

Lemma Fx(D,DxD) [ A iff (F,D) E VyA*(y)




Theorem 11 Let L; be an n-modal propositional logic, CK(L;) the
class of all predicate Kripke frames (F,D), with F F L.

Consider the corresponding predicate modal logic
L(CK(L:)). Then L;xS5 is (polynomially) reducible to L(CK(L;)):
for any (n+1)-modal propositional A

L:xS5 | A iff VyA*(y)eL(CK(L:))

(In other words, L;xS5 specifies a fragment within L(CK(L,))

Completeness theorems for modal predicate logics yield a standard
axiomatization of L(CK(L;)) in some cases.
QL; is the pure quantified version of L;, BF is the conjunction of
Barcan schema for all modalities:

¥V xO A— 0O ¥V xA.
Theorem 12 (1) (Tanaka&Ono, 1999) If L; is complete and V(L,) is
universally axiomatizable (in the classical sense), then

L(CK(L:)) = QL; +BF
(2) (Ono, 1983 <<Gabbay&Skvorstov&Shehtman, 2009)



The same holds if L; is tabular.

In all these cases L:xS5 is RE, but now from Theorems 11, 12, 3
we obtain

Corollary 12.1 [L;S5] | A iff QL:+BF | VyA*(y)
whenever L;is Horn axiomatizable.




TRANSLATION INTO CLASSICAL PREDICATE LOGIC
This “square translation” resembles the well-known standard
translation of modal formulas in the language of
(K»)? into classical first-order formulas with relativized quantifiers.
Consider the first order language with binary predicate letters

Ri,...Ry,P1, Po... We associate a binary predicate letter P; with every
proposition letter p..

(P)'(x%y):= Pi(x,y)

(A=>B)(x,y):= A%(x,y) = B(x,y)

12(x,y)= 1

(OA)*(x,y):= vz (Ri(x,z) = A%(z,Y))
(WA)*(x,y):= vz (R(y,z) = A*(X,2))



Theorem 13 If L is an elementary modal logic, ¢ (first-order)
axiomatizes V(L), then

(1)  QCL + @ | VxVyA%(x,y) iff L*| A.
(Here QCL is the classical first-order theory axiomatized by ¢).
(2) If L* has the product fmp, then the corresponding “square

fragment” of QCL + ¢ with binary predicates has the fmp (in the
classical sense).




Axiomatizing some products of nhon-product-matching
logics

Def. A propositional modal logic L is called locally tabular if, up to
equivalence in L, for any m there are finitely many formulas in m
propositional variables.
It is well-known that every locally tabular logic has the fmp.
Def. A propositional 1-modal logic L above K4 is of finite depth < m
if all L-frames are of depth <m.
L is of depth m if it is of depth <m+1, but not <m.

Theorem 14(Segerberg, 1971) Every logic of finite depth is locally

tabular.
Theorem 15 (Maksimova, 1974) The converse holds for extension

of K4

Theorem 16 (Sh 2010) If L is of finite depth, then [+,S5] is locally
tabular.

This allows us to axiomatize products of finite depth logics above
Grz with S5 in two ultimate cases: the catkin formula ACk is




exactly what is missing. ACk is the Fine — Jankov formula of the
following 2-frame (catkin):

Theorem 17 (Sh 2010) If
L=Grz+Adepth, (= L(all posets of depth n))

or
L=Grz3+ Adepth, (= L(all chains of depth n)),
then Lx S5 =[L.S5] + ACk.

Corollary 17.1 These logics are decidable.
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Theorem [Kurucz & Marcelino 2011]

K4.3xK, S4.3xK are not even axiomatizable in finitely many
variables

QUESTION. Are the logics
K4.3 x S5, S4.3 x S5

finitely axiomatizable?
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PRODUCTS

W

Def. The product of two Kripke frames
(W’R1’°°°’Rn) X (V!S1’°°°’Sm)::
(WXV’R11’°°°,Rn1 ’S12’°°°’Sm2)’

where



(X1,Y1)Ri1(X2,Y2) © x1Rix2 & y1=Y>

(X1,Y1)Sj2 (X2,Y2) © X1=X2 & Y15;Y2
Def. The product of two modal logics

L.xL,:= L{F,xF,| F,EL,, F,EL,})
AXIOMATIZATION PROBLEM: to find axioms of L,xL, given the
axioms of L., L,
Def. The fusion of two modal logics with disjoint modalities
L,+L, := the smallest logic containing L, w L,

Def. The commutative join of two modal logics with disjoint

modalities

B, (1<i<n), @, (1<j<m)
[L,,L;] := L+, + ©;0,p—M0,©;p + B, M p<«>MEp

for any i, k



Remark. If the modalities are not disjoint, we can change them.
These are Salqvist formulas expressing the following properties of

the relations in the product frame
<,0,p—0,2;p :

(RS, < S,,°(R;1)" (Church - Rosser property)

I~

) A




B; M p<>MEip:

R oS, = S,,°0R,; (commutativity)

A 0
|
|
I
I
|

T TR

Def. L,, L, are product-matching if L ;xL, = [L,,L,]



SQUARES

For a class of frames C put

C?:= {FxF | FeC)}.
For a modal logic A put

A%:= AxA

Proposition 1 [Gabbay,Sh 2000]

A*=L({FxF | FEA}).
("Squares of logics are determined by squares of frames".)
Proposition 2 [Gabbay,Sh 2000]

L,xL, is embeddable in (L *L,)=.

("Products are reducible to squares”.)



SEGERBERG SQUARES

These are square frames with additional functions. Krister
Segerberg (1973) studied a special type - squares of frames
with the universal relation.
He considered the following functions on squares.

o, (X,y) —>(y,x) (diagonal symmetry)

o (X,y) —=>(y,y) (the first diagonal projection)

c,- (X,¥) —>(Xx,x) (the second diagonal projection)
These functions can be associated with extra modal

operators O, ©, ®. So in square frames they are interpreted
as follows:

(x,y)E OA iff (y,x)EA
(x,y)E ©A iff (x,x)EA
(x,y)E QA iff (y,y)EA
Remark. Segerberg used the notation ® instead of O.



Formally we define the Segerberg square of a frame
F=(W,R,,...,R,) as the (2n+3)-frame
S 2
F2¢:.=(F ,G,, G, 6,) (Where 6_,c_,c_ are the
functions on W? described above).

Respectively, the Segerberg square of an n-modal logic

A is defined the logic of the Segerberg squares of its frames
A?®%:= L{F?®| FEA)}).

TOMORROW (OR SUCCESSOR) LOGIC
SL:= K+ Op <> Op

(an equivalent form: K + —Op <> O-p)
This well-known logic is also due to Segerberg (1967). It is

complete w.r.t. the frame
0 >0 >0 >0 > o 00

(the successor relation on natural numbers).



Every logic of a frame with a functional accessibility relation
iIs an extension of SL.

AXIOMATIZING SEGERBERG SQUARES

Soundness Every Segerberg square validates the following
formulas
The corresponding semantic conditions for an arbitrary (2n+3)-frame

(Vaxla'-°9Xn, Yl,...,Y f f f)

no O) @7 (D
are 1n the right column; here fg denotes the composition of functions:
(fg)(x)=t(g(x))
(I) The SL-axioms for the circles O, ©, ©.

(1I)
(Sgl) OOp <> p f_f, = 1 (the identity function

on V)

The "symmetry" f_ is an involution.

(Sg2) ©6p «> ©p f f_=1f

©



(Sg2') OOp <> Op f f =",
Both projections fe, ch are idempotent transformations of the square. In
fact (Sg2') follows from (Sgl), (Sg2), (Sg3).

(Sg3) OGp «> Op f f =1,

(Sg4) ©0p <> ©p f f =1

In Segerberg squares (Sg4) means that the image of f_ consists of self-
symmetric points (or: every diagonal point is self-symmetric). But in the
general case not all self-symmetric points are in f_[V].

(Sg3), (Sg4) imply that

f_f_f_ =1, ie, the involution f_ conjugates the projections f_ and f .

(Sg3) shows that @ is expressible in terms of O, ©. It also
implies that
f [V]= f V]

(Sg4') OOp <> Op ff =1,

This conjugate of (Sg4) 1s derivable from (Sgl), (Sg3), (Sg4).
(Sg5) OE,Op <> Mp aRjib <= fo(a)Rizfo(b)



(Sg5) OHOp <> ip aRiib < f_(a)Rif(b)
Symmetry is an isomorphism between Rj; and R;>

(Sg6) ©B/;,(Mp — ®p) f_(a)Ri1b = bRixf (b)

If (v,y)Ri1(x,y) (i.e. yR;ix), then (X,y)Ri2(x,X).

(Sg7) ©p —» H,©Ep aRiib = f_(a) = f_(b)
Horizontally accessible points are in the same horizontal row.
(Sg8) M; L <» ©M; L (db aRixb) < (b f_(a)Riz2b)
Vertical seriality 1s equivalent for (y,y) and (X,y).

The conjugates of (5g6)-(5g8) are derivable, so they are not
written here.
Def. For a modal logic A, put

[A, A]® :=

[A, A] + SL*SL*SL (for O, ©, ®) + {(Sgl),..., (5g8)}.
Def. A universal Horn sentence is a first order sentence of the

form VX.. (p(X,y,z)—>R(X,y)),



where ¢ is positive, R(X,y) is atomic.



Modal formulas corresponding to such sentences are conjunctions

of formulas of the form

(©. Q) p—(O..0)p

-
-
-

Def. A modal logic is Horn axiomatizable if it is axiomatizable
by formulas that are either variable-free or correspond to universal

Horn sentences.

Completeness theorem for products [Gabbay,Sh 1998]

If L;, L, are Horn axiomatizable, then they are product-
matching.

Theorem 1 (Completeness) If a logic A is Horn
axiomatizable, then A%2®=[A, A]®



Remark Segerberg himself axiomatized the logic B of all
frames of the form (W,WxW)?®, In this case (Sg8) becomes
trivial and (5g6) should be replaced with a stronger axiom:
Op — Op. So Segerberg's logic is not a Segerberg square in
our sense; it is a proper extension of S52%¢.

Sketch of the proof of Theorem 1

Step 1. (K,))?*®=[K,, K.]®

Consider the case n=1. The logic L:= [K, K]® is
Sahhgqvist, so it has the countable frame property, so it its
determined by countable rooted L-frames. Let

F=(W,R{,R5, fo,f@,fq)) be such a frame.

Now the goal is to construct a p-morphism from a
Segerberg square onto F. We use a "rectification game”
similar to the one described in [Sh 2005] and originally
motivated by the games from [Many-dimensional modal
logics, 2003] and [Relation algebras by games, 2002].




Let T, = (w*,<) be the standard countable intransitive
irreflexive tree, where
w* is the set of all finite sequences in w;
a<Biff Inew = an.
Let T, + Ty be the disjoint union of its two copies:
{Xa | aew*} U {yo| aew*} with the relation <.
Consider the product frame
(To + To) 2 =((0*+w*)?%,S4,S5).
A network over F is a partial function from (T, + Ty,)°to F
h: N>V
such that
e dom(h)=N is symmetric:
o [N]=N,
o [N] < N.
e N does not have gaps:



(o,B)eN & (a,y)eN & <y & B< B'= (a,,B"')eN
(<" is the transitive closure of <)
e h is monotonic:
aSib = h(a)Rih(b),
h(c,(a))= f(h(a)),
h(c(a))= f (h(a)).
The game between A and E constructs a countable
increasing sequence of networks hgchic...
according to the following rules.
1. No={(X,y),(y,X),(X,X),(Y,y)}, where
ho(X,¥Y)=ug, the root of F; then hg(y,x), ho(X,x), ho(y,Yy)
are uniquely determined.
Remark. If ugis self-symmetric, we don't need two copies,
the game can start from No={(X,1)}, where A is empty.
2. The (n+1)th move of A is of two types
Lift enquiry (a,u,j,v), where aeN,, u=hy(a), uRyv




The response of E must be a network h,+; extending h, ch
that 3beNp;1(aS;b &

THE FINITE MODEL PROPERTY

Def. A QT-formula is a modal formula of the form

O.p—0OFp (generalized transitivity)
or

O.Op—p (symmetry)



A QTC-logic is axiomatizable by formulas that are either
variable-free or QT-formulas.

Notation K, is the minimal n-temporal logic

(axiomatized by <>i_1Elip—>p, <>iI:Ii_1 p—p)

The fmp for products [Sh 2005]
If L, is a QTC-logic, then K, xL, = [K,,,L,] has the fmp.

Theorem 2 (K,)*® has the fmp.

Conjecture (K_.,)*® has the fmp.



THE PRODUCT FMP FOR SEGERBERG SQUARES

Def A logic A*®has the product fmp if it is determined by
finite Segerberg squares:
A?®= L({F?®]| F is finite, FEA}).
The product fmp for products [Gabbay, Sh 2002]
Every logic K;,, x K , has the product fmp.

Theorem 3 (K_)?® has the product fmp.

Conjecture (Ki,)*® has the product fmp.
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Ideas for the proofs of Theorems 1,2,3.
Relation algebras

=R
O Q

© O
®d
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