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In the report connections among will be de�ned:

• primitive systems of elements (primitive elements);

• measure preserving systems of elements ( measure preserving
elements);

• unimodular systems of elements ( unimodular elements).

In the beginning of my report I will consider these connections
for absolutely free group and then for groups that are free in
some solvable varieties and variety of pro�nite metabelian
groups.
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THE FOX DERIVATIONS

Fix some bases X = {x1, . . . , xr} in a free group Fr . Let Z(Fr ) be
the integral group ring of the group Fr and ∆ its augmentation
ideal; that is, the kernel of natural homomorphism

ε : Z(Fr ) −→ Z.

The ideal ∆ is a free right (left) Z(Fr )−module with a free basis
{(xi − 1) |1 ≤ i ≤ r} :

∆ =
r∑

i=1

(xi − 1)Z(Fr ).
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For v ∈ ∆ the right Fox derivations ∂i(v) in the basis X are
projections of the element v on the corresponding direct
summands.
For each u ∈ Z(Fr ) the element u − ε(u) belongs to ∆. Thus,
any element u ∈ Z(Fr ) can be written in the form

u − ε(u) =
r∑

i=1

(xi − 1)∂i(u)

uniquely.
The elements ∂i(u) are called the right Fox derivatives of
u ∈ Z(Fr ) in the basis X .
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For each u, v ∈ Z(Fr ) we have

∂i(u + v) = ∂i(u) + ∂i(v).

∂i(uv) = ∂i(u)v + ε(u)∂i(v).

It follows that

∂i(xj) = δi,j ,

where δi,j is the Kronecker's symbol.
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PRIMITIVE, MEASURE PRESERVING,
AND UNIMODULAR ELEMENTS

(on the variety of all groups.)

De�nition. An element v of a free group Fr is called unimodular
if

∂1v · α1 + . . .+ ∂r v · αr = 1

for some α1, . . . , αr ∈ Z(Fr ).

De�nition. An element v of a free group Fr is called primitive if
it is a subset of some set of free generators in Fr .
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The property of an element v in the free group Fr to be
unimodular is independent of the basis in which v is
represented. This means that

{ primitive element} =⇒ { unimodular element}.

Indeed, let v = x1 be a primitive element. Then

∂1v = 1, ∂2v = . . . = ∂r v = 0.

Hence the ideal generated by ∂1v , . . . , ∂r v is equal to Z(Fr ). In
other words, the element v is unimodular.
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De�nition of a verbal map.

Let v = v(x1, . . . , xr ) be an element of the free group Fr .
Consider a �nite group G. Denote by Gr the direct product
G × . . .×G︸ ︷︷ ︸

r

. Given v , de�ne the verbal map

ϕv : Gr −→ G

assigning g = v(g1, . . . ,gr ) to g = (g1, . . . ,gr ) ∈ Gr , i.e. g is the
value of the word v at g.
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A measure preserving element.

De�ne a uniform distribution corresponding to a random choice
of elements g in Gr , i.e. every g ∈ Gr is chosen with probability
|G|−r .

De�nition. An element v is called measure preserving on G if
each g ∈ G appears as image under ϕv exactly |G|r−1 times, i.e.,
with probability |G|−1.

De�nition. An element v that preserves measure on every �nite
group G is called a measure preserving (on the variety of all
groups).
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Trivially,

{a primitive element} =⇒ {a measure preserving element}

Actually, note that the property of an element v in the free
group Fr to preserve measure is independent of the basis in
which v is represented. Therefore let v = x1. Then

ϕv (g1, . . . ,gr ) = v(g1, . . . ,gr ) = g1.

This means that each g1 ∈ G has exactly |G|r−1 preimages
under ϕv , i.e. appears with probability |G|−1.
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SOME KNOWN FACTS AND CONJECTURES
OF THE PRIMITIVE, MEASURE PRESERVING,

AND UNIMODULAR ELEMENTS
(on the variety of all groups)
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Conjecture 1. An element v ∈ Fr is primitive if and only if it
preserves measure.

This Conjecture was formulated by D.Puder in his paper �On
primitive words II: measure preservation�.
He write �From private conversations we know that this has
occurred to the following mathematicians and discussed among
themselves: T.Gelander, A.Shalev, M.Larsen, and A.Lubotzky.
The question was mentioned several times in the Einstein
Institute Algebra Seminar. This conjecture was independently
raised in the paper N.Linial and D.Puder, �Words maps and
spectra of random graph lifts�, Random Structures and
Algorithms 37 (2010), no 1, 100-135.�
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In the paper of D.Puder �On primitive words II: measure
preservation� the positive solution of the Conjecture 1 was given
for r = 2.

Later the positive decision for each r ≥ 2 was given by D.Puder
and O.Porzanchevski, � Measure Preserving Words are
Primitive� arXiv, 15 Feb. 2012

Theorem (Puder, Porzanchevski, 2012) An element
v ∈ Fr , r ≥ 2, is primitive i� it is measure preserving.
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Theorem (Topping, 1966). An element v ∈ F2 is primitive i� it
is unimodular.

Theorem (Umirbaev, 1994). An element v ∈ Fr , r ≥ 2, is
primitive i� it is unimodular.

Let v ∈ Fr , r ≥ 2. Thus, from results of Umirbayev, Puder, and
Porzanchevski we obtain that the following conditions are
equivalent:

(1) The element v is primitive;
(2) The element v is unimodular;
(3) The element v preserves measure (on the variety of all
groups).
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PRIMITIVE, MEASURE PRESERVING

and UNIMODULAR

SYSTEMS OF ELEMENTS

(on the variety of all groups).
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Measure preserving systems of elements.

The notion of a measure preserving element can be extended to
a set of elements in Fr as follows. Consider an ordered set
(system) of elements {v1, . . . , vm}, 1 ≤ m ≤ r , in Fr . De�ne the
verbal mapping ϕ{v1,...,vm} from Gr to Gm by assigning to each
g = (g1, . . . ,gr ) ∈ Gr the element (v1(g), . . . , vm(g)) ∈ Gm :

ϕ{v1,...,vm} : (g1, . . . ,gr ) 7→ (v1(g1, . . . ,gr ), . . . , vm(g1, . . . ,gr )).
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De�nition. A system of elements {v1, . . . , vm} preserves measure
on G if every g ∈ Gm is the image of exactly |G|r−m elements
under ϕ{v1,...,vm}, i.e. with probability |G|−m.

De�nition. A system of elements {v1, . . . , vm} that preserves
measure on every �nite group G is called measure preserving
(on the variety of all groups) .

De�nition. A system of elements {v1, . . . , vm} in a free group Fr
is called primitive if it can be complemented to a basis for Fr .
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Let v = {v1, . . . , vm}, 1 ≤ m ≤ r , be a system of elements of the
free group Fr and let

J(v) = (∂i(vj))m×r

be the Jacobi matrix.

De�nition. The system of elements v is called unimodular if
there is a matrix Ar×m over the ring Z(Fr ) such that
J(v) · A = Em×m (identity matrix)
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SOME KNOWN FACTS AND CONJECTURES
ABOUT PRIMITIVE, MEASURE PRESERVING,
AND UNIMODULAR SYSTEMS OF ELEMENTS

(on the variety of all groups).
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The connections between primitive and unimodular systems of
elements was established by U.U.Umirbaev.

Theorem (Umirbaev, 1994). A system of elements
{v1, . . . , vm}, 1 ≤ m ≤ r , of the free group Fr , r ≥ 2, is
primitive i� it is unimodular.

Theorem (Puder, 2011, Puder, Parzanchevski, 2012). For
m = 1, r − 1, r a system of elements {v1, . . . , vm} of the free
group Fr is primitive i� it preserves measure (on the variety of
all groups).
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PRIMITIVE and MEASURE PRESERVING
SYSTEMS of ELEMENTS

(on a variety M).
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Suppose we consider only groups in some variety M as �nite
groups G. Let V = V (M) be the verbal subgroup in Fr
corresponding to this variety. All values of v ∈ V on G are equal
to the unit. Therefore, {v1, . . . , vm} in the de�nition of systems
of measure preserving elements on the group G may be taken
from the relatively free group Fr (M) = Fr/V .

De�nition. A system of elements {v1, . . . , vm}, 1 ≤ m ≤ r , in a
relatively free group Fr (M) preserves measure on the variety M
if it preserves measure on every �nite group G ∈M.



22

Suppose that a variety M is a product M = AB of the variety A
of all abelian groups and some variety B. Thus,

M = {G | G/A ∈ B, A ∈ A }.

Then
Fr (M) ∼= Fr/[V ,V ],

where V is the verbal subgroup of Fr corresponding to the
variety B. Note that the Fox derivations are well de�ned on
Fr (M) if there values obtained in Z(Fr/V ) ∼= Z(Fr (B)).
In particular the concept of an unimodular element is de�ned
correctly for variety A2 of all metabelian groups.
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De�nition. Let v = {v1, . . . , vm}, 1 ≤ m ≤ r , be a system of
elements of relatively free group Fr (AB) and let
J(v) = (∂i(vj))m×r be the Jacobi matrix over the ring Z(Fr (B)).
The system of elements v = {v1, . . . , vm} is called unimodular
(on the variety AB) if there is a matrix Ar×m over the ring
Z(Fr (B)) such that J(v) · A = Em×m.

For the variety of all metabelian groups the following criterion
of primitiveness takes place.

THEOREM. A system of elements {v1, . . . , vm}, 1 ≤ m ≤ r , in
the free metabelian group Fr (A2) is primitive i� it is
unimodular.
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Denote by P(M) the set of all primitive systems {v1, . . . , vm} in
the group Fr (M) and by S(M) the set of all measure preserving
systems on the variety M.

QUESTION 1. For which solvable varieties M the sets P(M)
and S(M) coincide?
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NEW RESULTS



26

THEOREM 1 (Timoshenko, 2013). Let Nc be the variety of all
nilpotent groups of class at most c. A system of elements
{v1, . . . , vm}, 1 ≤ m ≤ r , of the free nilpotent group Fr (Nc) is
primitive i� the system preserves measure on the variety Nc , i.e.
P(Nc) = S(Nc).

THEOREM 2 (Timoshenko, 2013). A system of elements
{v1, . . . , vm}, 1 ≤ m ≤ r , in Fr (NcA) preserves measure on the
variety NcA i� the system is primitive, i.e. P(NcA) = S(NcA).

In particular, Theorem 2 is true for the variety A2 of all
metabelian groups.
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For M = AB denote by U(M) the set of all unimodular systems
of elements in the group Fr (M).

Therefore
P(A2) = U(A2) = S(A2).
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Thus, the Question 1 has an a�rmative answer for the varieties
Nc , NcA and partially for the variety G of all groups.
Therefore a new question arises:

Question 2. Is there a variety M and non-primitive element
v ∈ Fr (M) such that v preserves measure on M?

THEOREM 3 (Timoshenko, 2013). There is some unimodular
non-primitive element v ∈ F2(AN2). This element preserves
measure on the variety AN2. We can take
v = x1[x1, x2, x2, x1, x2] ∈ F2(AN2). Thus,

P(ANc)  S(ANc).
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The proof of this theorem is based on the following criterion of
primitiveness for locally �nite varieties of groups.

THEOREM (Timoshenko, 1998). Let M be a variety generated
by some �nite group, n > 0, An be a variety of abelian groups,
whose exponent divides n, 1 ≤ m ≤ r . The elements
{v1, . . . , vm} of the group Fr (AnM) form a primitive system i�
(1) the system of elements {v1, . . . , vm} is unimodular over the
ring Zn(Fr (M));
(2) the images of {v1, . . . , vm} in the group Fr (M) form a
primitive system.
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Suppose that v1, v2 ∈ Fr belong to the same orbit of the action
of Aut(Fr ). This clearly implies that they induce the same
measure on every �nite group.

Conjecture 2. The converse is also true.

This Conjecture was formulated by D.Puder in his paper �On
primitive words II: measure preservation�.

I don't know any results on this Conjecture (in variety of all
groups)

We are interested in this Conjecture for a variety of solvable
groups.
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Question 3. Is there a solvable variety M and two elements v1
and v2 in Fr (M) such that they belong to the di�erent orbits of
the action of Aut(Fr (M)) but induce the same measure on the
variety M?

COROLLARY. There are two elements v1 = x1 and
v2 = x1[x1, x2, x2, x1, x2] in F2(AN2) such that they belong to
the di�erent orbits of the action of Aut(F2(AN2)) but they
induce the same measure on the variety AN2.
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PROFINITE METABELIAN GROUPS
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We will give other de�nition of measure preserving system of
elements. New de�nition is equivalent to the previous one for
the abstract (not topological) groups. But it can be applied also
to topological groups.
Fix some �nite group G ∈M and select a homomorphism
α ∈ Hom(Fr (M),G) uniformly at random. A homomorphism
from a relatively free group is uniquely determined by choosing
the images of the elements of a basis, so that every
homomorphism is chosen with probability 1/|G|r .



34

De�nition. We say that {v1, . . . , vm} is measure preserving if for
every �nite group G ∈M and randomly chosen homomorphism
α ∈ Hom(Fr (M),G) the m-tuple (α(v1), . . . , α(vm)) is uniformly
distributed in Gm.

Let F̂r be the pro�nite completion of Fr and Fr is naturally
embeded in F̂r . Every basis of Fr is then a basis for F̂r , so a
primitive word v ∈ Fr is also primitive as an element of F̂r . It is
conjectured that the converse also holds:
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Conjecture 3. A word v ∈ Fr is primitive in F̂r i� it is primitive
in Fr .

Equivalent formulation.

Conjecture 3. The primitive elements of free group Fr form a
closed set in the pro�nite topology of Fr .

The positive decision of Conjecture 3 was given by C.Mery.

Theorem. v ∈ Fr is primitive as an element of F̂r i� it is
primitive in Fr .
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The similar question arises to varieties of groups. We are
interested in this question for the variety A2 of all metabelian
groups.

QUESTION 4. Let S be a free metabelian group of rank r and
Ŝ its pro�nite completion. Do the primitive elements of S form
a closed set in the pro�nite topology of the group S?
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THEOREM 4 (Timoshenko, 2013). Let Ŝ be the free pro�nite
metabelian group of rank r . A system of elements
{v1, . . . , vm} ∈ Ŝ,1 ≤ m ≤ r , is primitive i� this system
preserves measure on the variety of all pro�nite metabelian
groups.

THEOREM 5 (Timoshenko, 2013). A system of elements
{v1, . . . , vm}, 1 ≤ m ≤ r , of the free metabelian group S of rank

r is primitive i� it is primitive in Ŝ.

In particular the primitive elements of free metabelian group S
form a closed set in pro�nite topology of S.
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Thanks for attention!


