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This talk surveys some results on monadic second-order definability in (relatively)
weak arithmetical structures. Perhaps the most important of these structures are

〈N;6〉, 〈N; +,=〉, 〈N;×,=〉, 〈N; | 〉 and 〈N;⊥〉
where | and ⊥ denote the divisibility relation and the coprimeness relation, respecti-
vely — i.e., for any {n, k} ⊆ N, we have

n |m ⇐⇒ n divides m, and

n⊥m ⇐⇒ n and m have no common prime divisor.

I shall pay special attention to them in my talk. Also, I shall mention some related
results on first-order definability (in particular, those by A. Bès, P. Cegielski, Yu. V.
Matiyasevich, D. Richard, J. Robinson and A. R. Woods). See the references to this
abstract for further details.
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