Title: Self-similarity for τ groups.

Abstract: Let Γ be a group, let Θ be a subgroup and let $f : \Theta \to \Gamma$ be a morphism. The *f*-core of Θ is the biggest subgroup $C \subset \Theta$ such that Cis normal in Γ and $f(C) \subset C$. The pair (f, θ) is called a *similar data* for Γ if Θ and $f(\Theta)$ have finite index, if Ker *f* is finite and if the *f*-core of Θ is trivial. The group Γ is called *self-similar* if it admits a similar data (f, θ) . A self similar group acts faithfully on a tree. S. Sidki raised the question if any τ -group Γ is self-similar (a $a \tau$ -group is a finitely generated torsion-free nilpotent group).

Let Γ be a τ -group. There is a unique simply connected connected nilpotent Lie group N such that Γ embeds in N as a cocompact lattice. Let $\mathfrak{n}_{\mathbb{R}}$ be the Lie algebra of N, let $\mathfrak{n}_{\mathbb{C}} = \mathbb{C} \otimes_{\mathbb{R}} \mathfrak{n}_{\mathbb{R}}$ and let $\mathfrak{z}_{\mathbb{C}}$ be the center of $\mathfrak{n}_{\mathbb{C}}$. In the talk, we will explain the following result:

Theorem: The group Γ is self-similar iff the Lie algebra $\mathfrak{n}_{\mathbb{C}}$ admits a \mathbb{Z} -grading: $\mathfrak{n}_{\mathbb{C}} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{n}_{\mathbb{C}}^i$ such that $\mathfrak{n}_{\mathbb{C}}^0 \cap \mathfrak{z}_{\mathbb{C}} = 0$.