Two problems of Ershov in the numberings theory

Serikzhan Badaev Kazakh-British Technical University Almaty, Kazakhstan

Mal'tsev Meeting Novosibirsk, November 10–14, 2025

We say that a surjective mapping $\nu: \omega \mapsto \mathcal{F}$ is a computable numbering of a family $\mathcal{F} \subseteq \Sigma_n^{-1}$ of sets of the Ershov hierarchy if

$$\{\langle x,m\rangle \colon x\in \nu(m)\}\in \Sigma_n^{-1}.$$

The notion of reducibility for numberings is presupposed to be used in the talk. A Rogers semilattice $\mathcal{R}(\mathcal{F})$ stands for the set of equivalent classes of the computable numberings of \mathcal{F} ordered by reduction of numberings.

Our goal is to discuss history and the current state of studying two problems of Yu.L. Ershov concerning the following invariants of the Rogers semilattices $\mathcal{R}(\mathcal{F})$ when $\mathcal{F} \subseteq \Sigma_n^{-1}$:

• cardinality of $\mathcal{R}(\mathcal{F})$,

• possible number of minimal elements in $\mathcal{R}(\mathcal{F})$.

.