Два уровня выразительности логики первого порядка

(абстракт доклада)

Михаил Перетятькин

Универсальная конструкция конечно аксиоматизируемых теорий реализуется на основе специального комплекса преобразований теорий. Среди этих преобразований есть главное звено универсальной конструкции, главное звено процедуры редукции бесконечных сигнатур к конечным, а также нескольких элементарных звеньев преобразования конечных сигнатур и переименования символов (среди них, часто цитируемая редукция конечной предикатной сигнатуры к графам), [3, Sec. 5.8], [6, Fig. 2]. Схема для указанного комплекса [6, Fig. 2] имеет три входа и один выход. Первый вход реализует процедуру редукции конечных сигнатур, второй вход реализует процедуру редукции бесконечных сигнатур к конечным, третий вход реализует процедуру редукции вычислимо аксиоматизируемых теорий перечислимых сигнатур к конечно аксиоматизируемым теориям (конечных сигнатур), т.е., универсальную конструкцию конечно аксиоматизируемых теорий. Указанный набор элементарных преобразований и их комбинаций (в определённых сочетаниях) можно охарактеризовать словами унифицирующие преобразования теорий. Общей целью данных преобразований является сведение к малым сигнатурам: к бинарному предикату, к бинарной функции, или к двум унарным функциям. Произвольная конечная богатая сигнатура является расширением (в определённом смысле) одной из этих трёх сигнатур. Тем самым, гарантируется существование целевой теории с заданными свойствами в любой конечной богатой сигнатуре, т.е., имеет место факт унифицированности для решений поставленной проблемы, чем и объясняется выбор термина "унифицирующие преобразования".

Схема [6, Fig. 2] включает два типа преобразований, различающиеся отсутствием/наличием нестандартных фрагментов. На основе такой характеристики определены два естественных уровня выразительности логики первого порядка, а именно, финитарный уровень с модельно-биективными представлениями (который также можно назвать финитарно-комбинаторным), и инфинитарный уровень с нестандартными фрагментами (также называемый вычислительным). К финитарному уровню относятся процедуры редукции конечных сигнатур, декартовы и факторно-декартовы расширения теорий. К инфинитарному уровню относятся процедуры редукции бесконечных сигнатур к конечным и универсальная конструкция конечно аксиоматизируемых теорий. В качестве технического окружения, в [7] представлен ряд семантических слоёв имеющих значимость для данного направления.

Ключевым моментом поиска подходов к решению проблемы характеризации выразительной силы логики предикатов является естественная идея определить финитарный слой FinL включив в него теоретико-модельные свойства сохраняемые финитарными методами первого порядка, и $uu\phi uuumapuuuu$ слой InfL включив в него теоретико-модельные свойства сохраняемые инфинитарными методами первого порядка. В определениях слоёв FinL и InfL используются некоторые (специально подобранные) множества фини-

тарных и иинфинитарных методов, поскольку множества всех финитарных и всех инфинитарных методов определены неформально и поэтому не могут быть использованы в изложении. Важная особенность принятого подхода состоит в том, что в качестве отношения идентичности слоёв теоретико-модельных свойств применяется их сравнение по модулю представительного слоя, [5, Sec. 2]. По умолчанию используется реальный вариант понятия теоретико-модельного свойства, [2], в рамках регулярного расширения радикального подхода, т.е., предлагаемые утверждения характеризуют обобщённые алгебры Тарского-Линденбаума произвольных (как полных, так и неполных) теорий перечислимых сигнатур, [2].

Утверждение 1. [2] Финитарный семантический слой FinL включает все теоретико-модельные свойства.

Утверждение 2. [7], [2] Процедура редукции конечных сигнатур $T \mapsto \mathsf{Redu}(T,\sigma)$, σ — заданная конечная богатая сигнатура, сохраняет тип вычислимого изоморфизма алгебры Тарского-Линденбаума и все теоретико-модельные свойства соответствующих полных расширений указанных теорий.

Утверждение 3. [7], [2] Для исчислений предикатов $PC(\sigma_1)$ и $PC(\sigma_2)$ любых двух конечных богатых сигнатур σ_1 и σ_2 существует вычислимый изоморфизм между алгебрами Тарского-Линденбаума $\mu: \mathcal{L}(PC(\sigma_1)) \to \mathcal{L}(PC(\sigma_2))$ сохраняющий все теоретико-модельные свойства.

Утверждение 4. Слой UniL теоретико-модельных свойств сохраняемых универсальной конструкцией совпадает со слоем I2fL свойств сохраняемых процедурой редукции бесконечных сигнатур к конечным.

ОБОСНОВАНИЕ. Два указанных преобразования используют в качестве основы одно общее определение для инфинитарного слоя MQL (через класс $\kappa easumouhux\ uhmepnpemauuu)$ и поэтому сохраняют идентичные слои теоретико-модельных свойств.

Утверждение 5. Стандартная версия универсальной конструкции, см. [3, Th. 0.6.1, Th. 6.1.1], имеет максимально возможную силу.

Обоснование. По сути, универсальная конструкция конечно аксиоматизируемых теорий, является преобразованием из класса вычислимо аксиоматизируемых теорий различных перечислимых сигнатур в класс конечно аксиоматизируемых теорий заданной конечной богатой сигнатуры, и поэтому такую конструкцию можно рассматривать как улучшенный вариант процедуры редукции бесконечных сигнатур к конечным. Согласно утверждению 4, два указанных преобразования сохраняют одинаковые слои теоретико-модельных свойств. Нелогично ожидать, что возможна версия универсальной конструкции которая контролировала бы больше теоретико-модельных свойств чем это может делать процедура редукции бесконечных сигнатур к конечным. Это может служить неформальным подтверждением максимальности силы существующей версии универсальной конструкции.

В качестве глобальных утверждений для введённых уровней выразительности, получены две прямые формулы для структуры алгебры Тарского-Линденбаума исчисления предикатов конечной богатой сигнатуры над финитарным и инфинитарным слоями теоретико-модельных свойств; при этом, имеется утверждение, устанавливающее некоторый эффективный переход между

этими двумя представлениями, см. [4] (для сравнения, проблема характеризации алгебры Тарского-Линденбаума исчисления предикатов конечной богатой сигнатуры была поставлена Тарским в конце 1930х годов и решена Ханфом в 1975 году, см. [1, р. 587]). Полученные глобальные формулы выражают в концентрированном виде наиболее общую информацию о выразительной силе логики предикатов первого порядка. В частности, локальные утверждения, такие как процедуры редукции конечных сигнатур и универсальная конструкция конечно аксиоматизируемых теорий, являются непосредственными следствиями этих формул. С другой стороны, сами глобальные формулы получаются в результате некоторой сборки из локальных утверждений соответствующих уровней (процедуры редукции конечных сигнатур и универсальной конструкции). Таким образом, главные результаты финитарного и инфинитарного уровня выразительности представленные в глобальной форме являются более значимыми. Без этого, картина выразительных возможностей логики предикатов первого порядка была бы неполной. Важный момент данного направления состоит в том что, хотя определение понятия реального теоретико-модельного свойства [7] использует неформальную аргументацию, тем не менее, получаемые результаты с использованием выражения "все теоретико-модельные свойства" оказываются математически точными утверждениями.

В докладе излагается некоторый общий взгляд на результаты по выразительной силе логики первого порядка в рамках концептуального подхода на основе комбинаторики первого порядка. К настоящему времени, в этом направлении достигнут заметный прогресс и получены ответы на многие естественные вопросы, касающиеся выразительной силы логики первого порядка.

Список литературы

- [1] Hanf W. The Boolean algebra of Logic, Bulletin AMS, 31 (1975), 587-589.
- [2] Перетятькин М.Г. Конечно аксиоматизируемые теории. Новосибирск, МИОО, Научная книга, 1997, 318 р.
- [3] Peretyat'kin M.G. Global structure of predicate calculus in a finite rich signature over finitary and infinitary lists of model-theoretic properties, Maltsev's Meeting, Novosibirsk, 2-6 May 2010, Abstracts, 22-23.
- [4] Перетятькин М.Г. Комбинаторика первого порядка и теоретико-модельные свойства различимые на парах взаимно интерпретируемых теорий, Математические труды, 18, No 2 (2015), 61-92.
- [5] Peretyat'kin M.G. Fundamental significance of the finitary and infinitary semantic layers and characterization of the expressive power of first-order logic, Mathematical journal, 17, No 3 (2017), 91-116.
- [6] Перетятькин М.Г. Виртуальные алгебраические изоморфизмы между исчислениями предикатов конечных богатых сигнатур, Алгебра и логика, 60, No 6 (2021), 587-611.
- [7] Перетятькин М.Г. Декартовы расширения и определение понятия теоретико-модельного свойства, Алгебра и логика, в публикации (2025), 26 р.

Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan e-mail: peretyatkin@math.kz