SPECTRAL THEORY OF LOCALLY FINITE GRAPHS

V. I. TROFIMOV

A graph is called locally finite if degrees of all its vertices are finite. For a locally finite graph Γ and a field F, eigenvalues and their corresponding eigenfunctions of Γ over F are defined as eigenvalues and their corresponding eigenfunctions of adjacency matrix of the graph Γ over the field F, acting in the natural way on the vector space over F of all F-valued functions on the vertex set $V(\Gamma)$ of Γ . In the talk, a theory of eigenvalues and eigenfunctions of infinite locally finite connected graphs over fields is given. A special emphasis will be placed on the case of fields of characteristic 0. One of the consequences of the theory is that for an arbitrary infinite locally finite connected graph Γ , there are rational functions $R_v(x) \in \mathbb{Q}(x)$, $v \in V(\Gamma)$, where $R_w(x) \neq 0$ for some $w \in V(\Gamma)$, such that for any $\lambda \in \mathbb{C}$ which is not a pole of any of $R_v(x)$, $v \in V(\Gamma)$, and is not a zero of at least one of $R_v(x)$, $v \in V(\Gamma)$, the function $v \mapsto R_v(\lambda)$ is an eigenfunction of Γ over \mathbb{C} , corresponding to the eigenvalue λ . In particular, only algebraic numbers can be non-eigenvalues of Γ over \mathbb{C} .

IMM UB RAS, UMC, URFU, EKATERINBURG (RUSSIA)

E-mail address: trofimov@imm.uran.ru