Totally ordered structure $M$ is to be said quasi o-minimal, if for any $N\equiv M$ its definable subsets are boolean combination of the $\emptyset$-definable subsets and intervals with endpoints in $N$.
Let $G=\bigcup_{i<\omega} F_i \bigcup \{\omega, \omega^*, \omega+\omega^*, \omega^*+\omega,Q\},$ where $F_i$ is finite linear order with $i$ elements, $i<\omega$, $\ F_0=\emptyset$, $\ Q$ is ordering of rationals.
We consider the following classes of models: $K_1=\{\sum_{j\in D_1^1}(\sum_{i\in D_2^1} M_{ij}+\sum_{k\in Q} M'_{kj})\},$ where $D_1^1,D_2^1$ are arbitrary discrete orders and $\forall j \in D_1^1\ \forall i\in D_2^1\ M_{ij}\equiv N,\ N\in G$ è $\forall k\in Q\ M'_{kj}\equiv N',\ N'\in \bigcup_{i<\omega}F_i \bigcup \{\omega+\omega^*\}$ $K_l=\{\sum_{j\in D_1^l}(\sum_{i\in D_2^l} M_{ij}+\sum_{k\in Q} M'_{kj})\},$ where $D_1^l,D_2^l$ are arbitrary discrete orders and $\forall j \in D_1^l\ \forall i\in D_2^l,\ M_{ij}\equiv N,\ N\in G$ è $\forall k\in Q\ M'_{kj}\equiv N',\ N'\in \bigcup_{i=1}^{l-1}K'_i,\ K'_i\subset K_i$ è $K'_i$ is subclass of models with both endpoints.\\ {\bf Proposition.} $\langle M,< \rangle$ is quasi o-minimal model iff $M\in\bigcup_{i<\omega}K_i.$