
Title: Graph 3-coloring

Objective

The objective of this challenge is to develop an efficient 3-coloring algorithm to reduce the sum of
weighted monochromatic edges (edges where both vertices have the same color).

Given the undirected graph 𝐺 = (𝑉, 𝐸), define:

 𝑤: 𝐸 → ℝା as edge weights.
 𝑐: 𝑉 → {1,2,3} as the coloring function.
 A violation occurs if an edge (𝑢, 𝑣) ∈ 𝐸 has 𝑐(𝑢) = 𝑐(𝑣).

Objective:

min ෍ 𝑤(𝑒) ∙ 𝐼[𝑐(𝑢) = 𝑐(𝑣)]

௘ୀ(௨,௩)∈ா

Where 𝐼[∙] is the indicator function (1 if true, 0 otherwise).

Background

Generally, most of approximate coloring algorithms may be classified to:

 Heuristics: work fast, provide a local optimum without estimating the lower bound.
 Math programming (ILP, IQP, SDP): work slow, can estimate the lower bound, converge to the

global optimum

Since there’s no one silver bullet, we will focus on a following class of graphs:

 20000 nodes are uniformly generated within a square.
 Each node is randomly connected to some subset of its’ 60 closest neighbors (by Euclidean

distance).
 Edge weights are distributed lognormally.
 Note: in the benchmark, we sum the weights for (𝑢, 𝑣) and (𝑣, 𝑢) before transforming to an

undirected graph.
 Example graph generator: https://github.com/sedefe/3-coloring

Challenge Tasks
1. Minimize the sum of weighted monochromatic edges.
2. Estimate the objective’s lower bound.
3. Algorithm shall work in <30 min on a single-threaded CPU environment.

Deliverables
Report

A comprehensive report covering the following:

 A clear description of the algorithm(s) implemented, both for tasks 1 and 2.
 Benchmarking report.

Code

 Python/C++ code.
 Only publicly available third-party code must be used (e.g. no use of commercial MILP solvers).

