
Sensing matrix optimization for Hybrid 

Beamforming   

Hybrid beamforming (HBF) architecture is compromise between hardware complexity and performance with FD architecture 

[1]. Hardware complexity reduction is connected with smaller number of digital ports, while performance degradation is 

connected with smaller number of independent spatial beams radiated by antenna array. Maximum number of spatial degrees of 

freedom (DoF) is equal to number of antenna elements in FD architecture, for HBF architecture, is limited with number of RF 

chains which is smaller than number of physical antenna elements. Motivation example for HBF is following: antenna array has 

the same number of spatial beams as FD antenna array with same number of digital ports, while width of beams may be much 

smaller for HBF with efficient aperture utilization. Due to the effective aperture increasement HBF architecture with same number 

of digital ports as FD array may have higher angular resolution of beamforming providing better interference cancelation in multi-

user scenario. Extra-large antenna arrays (ELAA) are considered now for future wireless communications and HBF allows to get 

acceptable hardware complexity for usage in practical systems. 

Main types of HBF considered in literature is full connected (FC), partial connected (PC) [2]. In HBF antenna elements are 

connected with small set of ports for digital processing over analog network. This ports called digital ports. Parameters of analog 

network may be tuned by controllable elements like phase shifter (PS) that change the phase of input signal to given value. In 

case of PC architecture, antenna array is divided into sub-arrays, every sub-array is connected with single digital port and every 

antenna element in sub-array is connected with this port over PS. PC architecture has simplest hardware complexity – one PS per 

antenna element. In FC architecture every antenna element is connected over PS with every digital port, so number of PSs per 

antenna is equal to the number of digital ports. Additionally to PSs, every antenna element in FC array has power combiners that 

introduce unavoidable power losses and amplifiers must be used to compensate it.  

 

1 9 17 25 33 41 49 57 65 

2 10 18 26 34 42 50 58 66 

3 11 19 27 35 43 51 59 67 

4 12 20 28 36 44 52 60 68 

5 13 21 29 37 45 53 61 69 

6 14 22 30 38 46 54 62 70 

7 15 23 31 39 47 55 63 71 

8 16 24 32 40 48 56 64 72 

(c) 

 

Fig.1 HBF architectures: (a) - PC, (b) – FC, (c) – sub array splitting for PC 

 

Channel estimation in case of HBF is quite different from full digital (FD) case. In uplink measurement, where user (UE) 

transmit pilot signal and Base Station (BS) antenna array receive this, signal from individual antenna element is available for 

processing. In HBF case, received signal available at digital ports is  



𝒓 = 𝑭𝑹𝑭𝒉𝑺,       (1) 

where 𝒓 ∈ ℂ𝑵𝑹𝑭  is received vector, 𝑭𝑹𝑭 ∈ ℂ𝑵𝑹𝑭×𝑵𝑩𝑺  is the analog network matrix, , 𝒉𝑺 ∈ ℂ𝑵𝑩𝑺  is vector received at antenna 

elements, 𝑵𝑹𝑭 is the number of digital ports, 𝑵𝑩𝑺 is the number of antenna elements at BS antenna. In HBF 𝑵𝑹𝑭 ≪ 𝑵𝑩𝑺  as main 

reason is reduction of ports for digital processing and vector 𝒉𝑿 can be found up to arbitrary null-space vector after solving (1) 

as system of linear equations. Compressive Sensing (CS) methods allow to find unique solution of (1) by supposing that 𝒉𝑺 has 

sparse representation in some set of vectors called dictionary. In case of wireless channels 𝒉𝑺  is sparse in space of spatial 

frequencies, then received signal may represented like  

𝒓 = 𝑭𝑹𝑭𝑭𝑿𝒀𝒉𝑲,      (2) 

where 𝑭𝑿𝒀 = 𝑭𝑿 ⊗ 𝑭𝒀  is Kronecker product dictionary for two-dimensional antenna array, 𝑭𝑿 ∈ ℂ𝑵𝑿×𝑵𝑿 ,  𝑭𝒀 ∈ ℂ𝑵𝒀×𝑵𝒀  

corresponding Discrete Fourier Transformation matrices, 𝒉𝑲 sparse vector, 𝑁𝐵𝑆 = 𝑁𝑋𝑁𝑌. In CS naming convention 𝑭𝑿𝒀 is the 

dictionary matrix, 𝑭𝑹𝑭 is the measurement matrix and 𝑭𝑹𝑭𝑭𝑿𝒀 is the sensing matrix.    Consider for most interesting case of PC 

architecture for single time moment measureemtn. If 𝑠𝑖 , 𝑖 = 1 … 𝑁𝑅𝐹 denote set of non-zero indexes for i-th row of matrix 𝑭𝑷𝑪, 

then 𝑠𝑖 ∩ 𝑠𝑗 = ∅, ∀𝑖 ≠ 𝑗  and  ∪𝑖 𝑠𝑖 = 1 … 𝑁𝐵𝑆 , |𝑠𝑖| =
𝑁𝐵𝑆

𝑁𝑅𝐹
, ∀𝑖  and  |[𝐹𝑃𝐶]𝑗𝑘| = √𝑁𝑅𝐹/𝑁𝐵𝑆  for non-zero components of 𝑭𝑷𝑪 , 

note that 
𝑁𝐵𝑆

𝑁𝑅𝐹
 is the number of antenna elements in sub-array. Example for sub-array splitting from Fig.1(c) is shown at Fig. 2, 

where different colors denote assignment to different digital ports, every column has single non-zero elements and  non-zero 

matrix elements have magnitude |[𝐹𝑃𝐶]𝑗𝑘| = 1/3 as sub-array has 9 elements i.e. |𝑠𝑖| = 9 .  
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 Fig. 2 Example of analog network matrix for PC architecture shown at Fig. 1(c), 

𝑠1 = {1,2,3,7,8,9,13,14,15}, 𝑠2 = {4,5,6,10,11,12,16,17,18}, … 

  

 For multiple time moment 𝒓 is concatenation of vectors from single time moments and 𝑭𝑷𝑪  columns are concatenation of 

columns of matrices from single time moments. If 𝑁𝑇𝑁𝑅𝐹 ≥ 𝑁𝐵𝑆 , where 𝑁𝑇  is number of time moments for measurement, 

problem (1) is LS problem and  𝑭𝑹𝑭 may be designed non-singular by tuning phases of non-zero components.  In case of small 

number or single time moments sensing matrix 𝑩 = 𝑭𝑹𝑭𝑭𝑿𝒀 may be designed optimal in sense of CS based criteria. One of 

tractable criteria for sensing matrix optimization is incoherence minimization, where incoherence is defined for matrix with unit 

norm columns as 

𝜇𝐵 = max
i≠j

|〈𝑏𝑖 , 𝑏𝑗〉|. 

Incoherence cannot be less than fundamental bound called Welch bound.  In case of HBF, columns of sensing matrix may have 

different norms so additional criteria for measurement matrix optimization like equal norm columns must be considered.  

Wireless channel may change due to the user movement, in process of measurement during multiple time moments, so 

measurement process must be fulfilled in short time. Different frequencies may be used for measurement simultaneously, if 

number of time moments is not enough for channel estimation with acceptable quality. Dictionary is then 𝑭𝑭𝑿𝒀 = 𝑭𝑭 ⊗ 𝑭𝑿 ⊗

𝑭𝒀 , 𝑭𝑭 ∈ ℂ𝑵𝑭×𝑵𝑭 , 𝑵𝑭 is the number of subcarriers used by wireless system, wireless channel also has sparse representation in 

this dictionary.  Measurement matrix is then 

𝑭𝑹𝑭 = [𝑭𝟏
𝑻 𝑭𝟐

𝑻 … 𝑭𝑵𝑻

𝑻 ]
𝑻

, 𝑭𝒊 = 𝑷𝒊𝑰𝑵𝑭
⊗ 𝑭𝑷𝑪,𝒊 , 



where 𝑷𝒊 ∈ ℝ𝑟𝑜𝑢𝑛𝑑(𝑎𝑓𝑁𝐹)×𝑁𝐹  is row selection matrix connected with frequencies used at i-th moment of time, 𝑎𝑓 is a part of 

frequencies that used at every moment of measurement, sets of frequencies used in different time moments may have 

intersections, set of  non-zero  column indexes for 𝑷𝒊 defines 𝐹𝑖 set of frequencies,   𝑭𝑷𝑪,𝒊 is a single moment measurement matrix 

described above. Example of block structure for measurement matrix with three time moments is shown at Fig. 3. Every row set 

in 𝑭𝑹𝑭 with indexes 1 + (𝑛 − 1)𝑁𝑅𝐹 … 𝑛𝑁𝑅𝐹.  
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Fig. 3. Block structure for measurement matrix 𝑭𝑹𝑭 with three 

measurement time moments. Every block has 𝑵𝑹𝑭 × 𝑵𝑩𝑺 size. 

 

 Gram matrix is then  

𝑮 = 𝑭𝑭𝑿𝒀
𝑯 𝑭𝑹𝑭

𝑯 𝑭𝑹𝑭𝑭𝑭𝑿𝒀  

and optimization problem is then  

min ‖𝑮 − 𝜶𝑰‖𝐹
2         (P1) 

𝑠. 𝑡.  |𝐹𝑖| = 𝛼𝑓 , 𝑖 = 1 … 𝑁𝑇; 

𝑠𝑖 ∩ 𝑠𝑗 = ∅, ∀𝑖 ≠ 𝑗 ; ∪𝑖 𝑠𝑖 = 1 … 𝑁𝐵𝑆;|𝑠𝑖| =
𝑁𝐵𝑆

𝑁𝑅𝐹
, ∀𝑖 

|[𝐹𝑃𝐶,𝑖]𝑗𝑘| = √𝑁𝑅𝐹/𝑁𝐵𝑆 

where 𝛼 is empirical term responsible for equal norms for diagonal elements of Gram matrix. Both incoherence minimization 

and column norms equalization are included into (P1).  In literature [3] exists solutions for optimization sensing matrices for 

single frequency case, but joint optimization of frequency set and analog network matrix is not presented. It interesting to test 

acquired problem solution with another sets of frequencies i.e. fix FPC,i, 𝑖 = 1 … 𝑁𝑇 and change Pi to another sets. If problem has 

no high sensitivity to frequency sets then solution may be used for other users with different frequency sets for simultaneous 

channel estimation. Feasible numerical parameters are  𝑁𝑋 = 16,32, 𝑁𝑌 = 32,64, 𝑁𝐹 = 128, 256, 𝑁𝑇 = 2,3, 𝑁𝑅𝐹 = 16,32,64, 

|𝐹𝑖| = 0.05 … 0.25𝑁𝐹 ,  sub-array geometries are 1 × 8, 2 × 8, 4 × 4, 4 × 8 .  Optimization problem (P1) statement may be 

changed if better for simultaneous incoherence and column norm equalization exists. 

We would greatly appreciate any insights, recommendations, or innovative approaches that could assist in addressing this 

challenge. Your expertise and contributions could significantly enhance our collaborative efforts, paving the way for deeper 

exploration and fruitful future partnerships. 
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