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Solving Large-Scale Security-Constrained Unit Commitment 

Problems Using Machine Learning Approaches 

 
Backgrounds: 
The Security-Constrained Unit Commitment (SCUC) problem is a critical optimization task in power 

system operations. It determines the optimal schedule of power generation units while ensuring system 

reliability under contingencies, such as transmission line failures or generator outages. Traditional 

SCUC methods employ mixed-integer linear programming (MILP) models and optimization solvers to 

obtain solutions. Decision variables include binary variables indicating generator operational status and 

continuous variables representing power production levels at each time slot. Core constraints governing 

SCUC formulations encompass resource-level constraints and system-wide constraints. Resource-level 

constraints represent the physical operating characteristics of generators and other resources, including 

capacity limits, ramp rate limits, minimum run times, and minimum down times. These constraints may 

link binary and continuous variables across multiple time intervals. System-wide constraints primarily 

consist of power balance constraints, reserve requirement constraints, and transmission constraints. 

Transmission constraints are enforced to meet reliability standards under transmission line failures. 

They typically associate with continuous variables and are often decoupled by time intervals. 

State-of-the-art formulation variants of SCUC include multiple ramping formulations [1,2], multiple 

piecewise-linear costs formulations [3,4], and startup costs formulation [5]. Traditional methods 

encounter computational bottlenecks when applied to large-scale power grids with high renewable 

penetration (e.g., exceeding 1000 buses).  

 

The SCUC problem has been repeatedly solved in real-world applications, often several times daily, 

with only incremental changes to input data. Fundamental system parameters such as generation unit 

characteristics and grid topology exhibit minimal variation between consecutive solutions. Recent 

advancements in machine learning (ML)—particularly reinforcement learning (RL), graph neural 

networks (GNNs), and physics-informed neural networks (PINNs)—offer promising alternatives to 

expedite SCUC solving. ML can learn from historical operational data, approximate complex 

constraints, and accelerate decision-making, making it a compelling approach for real-time power 

system optimization. Some existing ML-based methods are listed below: 

 

Identify Redundant Constraints: Predict, based on statistical data, which constraints are necessary in 

the formulation and which constraints can be safely omitted. 

Warm Start: Construct, based on a large number of previously obtained optimal solutions, a partial 

solution that is likely to work well as a warm start. 

Fix Partial Solutions: Identify, with very high confidence, a smaller-dimensional affine subspace 

where the optimal solution is likely to lie, leading to the elimination of a large number of decision 

variables and significantly reducing the complexity of the problem. 

Predicting Integer Solutions: This method predicts the binary decisions first, and then the 

MILP-SCUC problem is transformed into a continuous linear programming problem while fixing the 

integer variables. 
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Technical Requirements: 
1. Develop a machine learning-based solution framework for the SCUC problem, where either partial 

machine learning components or fully end-to-end learning architectures may be employed. 

2. Computational acceleration using either GPU or multi-core CPU platforms is suggested to be 

incorporated in the solution implementation. 

 

Dataset: 
SCUC Configurations: The open-source package UnitCommitment.jl [10] provides 42 SCUC 

configurations. These configurations are JSON-based and describe the most common generator 

characteristics, including ramping, piecewise-linear production cost curves, and time-dependent startup 

costs. Additionally, they encompass operating reserves, price-sensitive loads, transmission networks, 

and contingencies. 

MIP Formulations: UnitCommitment.jl extends the default formulation with five more types of 

ramping formulations, three more types of piecewise-linear costs formulations, one more type of 

startup costs formulation, and one more type of transmission formulation. This combination yields 96 

(6 * 4 * 2 * 2) types of formulations. 

Dataset Generation: Utilizing the aforementioned 42 configurations and 96 formulations, 4032 MIP 

instances can be generated. 

 

Baseline: 
Solver: Gurobi, version 12.0.0 or above 

Configuration: The solving time of obtaining a feasible solution with a 1% Gap under a 7200s time 

limit. 

    - model.Params.TimeLimit = 7200 

    - model.Params.MIPGap = 0.01 

Hardware: Intel X86 with CPU Frequency >= 2.60GHz 

 

Goal: 
Optimality Metric: Obtain a solution within 0.5% optimality gap compared to the solution obtained 

by Gurobi according to the definitions provided in the baseline descriptions, i.e., 

|
௦௢௟௨௧௜௢௡೛ೝ೚೛೚ೞ೐೏_೘೐೟ ି௦௢௟௨௧௜௢௡್ೌೞ೐೗೔೙೐

௦௢௟௨௧௜௢௡್ೌೞ೐೗೔೙೐
| <= 0.5%. 

Performance: the performance is benchmarked by calculating the geometric mean score (GMS) of all 

the 4032 instances under the proposed methods. The objective is to achieve a 10X speedup over the 

baseline method under the above dataset while maintaining the above optimality metric, i.e., 

GMSproposed_method <= 0.1 * GMSbaseline. 

Hardware Acceleration: Utilize GPU or multi-core CPU acceleration whenever possible.   

 

Deliverables: 
- Source code for training and testing the machine learning model. 

- Source code and the model file of the ML-based solution for evaluation. 
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