Title: Parallel Eigensolver for Tridiagonal Symmetric Matrices
Objective

The objective of this challenge is to develop a parallel algorithm to compute the eigenvalues and
eigenvectors of a symmetric tridiagonal matrix, optimized for execution on a GPU. The focus is on
leveraging GPU architecture to accelerate computations using either the implicitly shifted QR
algorithm (steqr), the divide-and-conquer method (stedc), or both, depending on their suitability
for parallelism.

Background

Symmetric eigenvalue problems, expressed as Ax = Ax, where A is a symmetric matrix, A is an
eigenvalue, and x is an eigenvector, are ubiquitous in scientific computing. Solving these problems
efficiently for large matrices is computationally intensive and typically involves three key steps:

1. Tridiagonalization:
Transform the symmetric matrix A into a symmetric tridiagonal matrix T using orthogonal
similarity transformations, T = QT A Q, where Q is an orthogonal matrix. This step is
commonly performed using Householder reflections, reducing A to a form with non-zero
elements only on the main diagonal and the adjacent sub- and super-diagonals.

2. Eigenvalue Computation:
Compute the eigenvalues and eigenvectors of the tridiagonal matrix T. This is the focus of the
challenge, as it is a critical bottleneck for large-scale problems. Two primary methods are
considered: steqgr and stedc.

3. Back Transformation:
Map the eigenvalues and eigenvectors of T back to those of A using the orthogonal matrix Q.
This step completes the solution for the original matrix.

This challenge targets the second step, leveraging GPU parallelism to accelerate the computation of
eigenvalues and eigenvectors for symmetric tridiagonal matrices.

Implicitly Shifted QR Algorithm (steqr)
Overview

The implicitly shifted QR algorithm (steqr) is an iterative method that computes all eigenvalues and
eigenvectors of a symmetric tridiagonal matrix by repeatedly applying QR factorizations with shifts. It
is robust and widely implemented in libraries like LAPACK and cuSOLVER due to its reliability and
numerical stability.

The algorithm iteratively transforms the tridiagonal matrix T into a diagonal matrix, revealing the
eigenvalues on the diagonal, while accumulating orthogonal transformations to compute the
eigenvectors. The steps are:

1. Shift Selection:
Choose a shift u, typically an approximation of an eigenvalue, to accelerate convergence.
Common choices include the bottom-right element of T or a Rayleigh quotient derived from
the current matrix.

2. QR Factorization:
Compute the QR factorization of the shifted matrix T — ul = QR, where Q is orthogonal and R
is upper triangular. This factorization is done implicitly using Givens rotations, which preserve



the tridiagonal structure. The process of 'chasing the bulge' refers to eliminating off-diagonal
elements (introduced by the shift) as they are moved down the matrix, restoring tridiagonality.

3. Matrix Update:
Update the matrixas T' = RQ + ul. This new matrix T' remains symmetric and tridiagonal and
serves as the input for the next iteration.

4. Convergence:
Repeat the process until T becomes diagonal, with the diagonal elements being the
eigenvalues. The eigenvectors are obtained by accumulating the Q matrices from each
iteration into a single orthogonal matrix.

Parallelization Potential

Although steqr is inherently iterative, parallelism can be exploited within each QR factorization step.
Specifically:

e Givens Rotations: These can be computed and applied in parallel across multiple threads.

e Matrix Updates: The application of Q and R to update T can leverage GPU memory coalescing
and thread blocks. cuSOLVER’s implementation demonstrates this, but scalability may be
limited for very large matrices due to the sequential nature of iterations.

Complexity

« Eigenvalues and Eigenvectors: O(n?), where n is the matrix size. Each iteration requires 0(n)
operations, and convergence typically takes O (n) iterations.

Divide-and-Conquer Method (stedc)
Overview

The divide-and-conquer method (Sstedc) is a recursive algorithm used to compute eigenvalues and
eigenvectors of tridiagonal matrices. By splitting the matrix into smaller subproblems, solving them
independently, and recombining the results, this method becomes highly parallelizable, making it
particularly well-suited for GPU architectures. Its recursive nature allows for efficient use of parallel
computing resources, enabling faster solutions for large-scale eigenvalue problems.

The divide-and-conquer algorithm follows a series of steps to compute eigenvalues and eigenvectors
of a tridiagonal matrix. The key steps are as follows:

1. Matrix Splitting:
The tridiagonal matrix T is split into two smaller submatrices T; and T, at a chosen point
(typically the middle). This introduces a rank-one modification in the form of:

_(h 0 T
T—(O T2)+puu

where u is a vector with non-zero elements only at the splitting points, and p is the off-

diagonal element at the split. This modification is critical for simplifying the problem into two
smaller subproblems.

2. Recursive Solution:
The eigenvalues and eigenvectors of the submatrices T; and T, are computed recursively. For
sufficiently small submatrices (e.g., 2x2 matrices), direct methods such as the QR algorithm or
closed-form solutions are used.



3.

Combination via Secular Equation:
The solutions from T; and T, are combined by solving the secular equation:

1 A _
+p A—d-_o
n l
2

where d; are the eigenvalues of the submatrices, z; are the components of the eigenvectors
adjusted by u, and A represents the eigenvalues of the original matrix T.

Eigenvector Construction:

The eigenvectors of T are constructed by combining the eigenvectors of T; and T, adjusting
them based on the solutions of the secular equation and the rank-one update. This provides
the final eigenvectors for the matrix T.

Parallelization Potential

The stedc method excels in parallel environments:

Independent Subproblems: T; and T, can be solved concurrently on separate GPU threads or
blocks.

Recursive Parallelism: Each recursive level can spawn additional parallel tasks.

Secular Equation: While inherently sequential, this step can be optimized by distributing the
summation across threads, though it remains a bottleneck for very large matrices. This makes
stedc highly scalable on GPUs, especially for large n.

Complexity

Eigenvalue Computation: The complexity of computing eigenvalues using the divide-and-
conquer strategy is O(nlogn), where n is the dimension of the matrix. This results from the
recursive splitting of the problem into smaller submatrices.

Eigenvector Computation: The complexity of computing the eigenvectors is 0(n?), as this step
involves combining the results of all recursive levels and adjusting eigenvectors at each stage.

Challenge Tasks

Literature Review

Conduct an extensive review of existing algorithms for symmetric tridiagonal eigenvalue
problems, with a particular focus on the steqr and stedc methods.

Provide a detailed summary of their mathematical foundations, computational complexities,
and strategies for parallelization.

Highlight key advancements in the implementation of these algorithms on GPUs, drawing from
recent literature.

Algorithm Development

Implement a GPU-optimized version of:
o stegr, focusing on parallelizing the QR factorization steps.

o stedc, utilizing recursive parallelism and exploiting the independence of subproblems.



o (Optional) A hybrid approach that combines the strengths of both steqr and stedc
to improve performance.

e Optimize for GPU-specific features, including:
o Memory Coalescing: Ensure efficient memory access patterns to maximize bandwidth.

o Thread Management: Minimize thread divergence and maximize thread utilization for
better parallel efficiency.

Performance Evaluation

e Evaluate the performance across a variety of matrix sizes (e.g., n = 100,1000,10000) and
conditions (e.g., well-conditioned vs. ill-conditioned matrices).

e Analyze the following aspects:
o Execution Time: Compare runtime for different methods across various matrix sizes.
o Scalability: Assess how performance improves as more GPU resources are utilized.

o Accuracy: Compare results with known eigenvalues and eigenvectors to ensure
correctness.

Optimality Conditions
¢ Investigate the conditions under which each method excels:

o Matrix Size: Determine the circumstances in which stedc outperforms steqr and
vice versa.

o GPU Architecture: Explore the impact of thread count, memory bandwidth, and other
architectural factors on performance.

o Problem Characteristics: Evaluate the influence of matrix condition number and
eigenvalue distribution on the choice of method.

e Provide evidence-based guidelines for selecting the optimal method based on empirical data.

Deliverables

Report
A comprehensive report covering the following:

e A detailed literature review of steqr and stedc, including their mathematical foundations,
computational complexities, and suitability for parallel GPU implementations.

e Aclear description of the algorithm(s) implemented, including pseudocode, optimization
strategies, and performance considerations.

e A complexity analysis along with a detailed performance comparison to cuSOLVER’s steqr
solver (optional).

e Adiscussion on optimality conditions, identifying when each method excels and the associated
trade-offs.

Code (Optional but recommended)



A well-documented GPU implementation in CUDA (or similar), including the source code for
steqr, stedc, or hybrid approaches.

Include scripts for benchmarking, performance evaluation, and testing to validate the
implementation against cuSOLVER’s steqr solver.

References

1)

2)

5)

6)

Cuppen, J.J. M. (1981). "A divide and conquer method for the symmetric tridiagonal
eigenproblem." Numerische Mathematik, 36(2), 177-195.

Golub, G. H., & Van Loan, C. F. (2013). Matrix Computations (4th ed.). Johns Hopkins University
Press.

Dongarra, J. J., Sorensen, D. C., & Bunch, J. R. (1985). "A parallel algorithm for the symmetric
tridiagonal eigenvalue problem." SIAM Journal on Scientific and Statistical Computing, 6(1),
222-232.

Hernandez-Rubio, E., Estrella-Cruz, A., Meneses-Viveros, A., Rivera-Rivera, J. A., Barbosa-
Santillan, L. I., & Chapa-Vergara, S. V. (2024). "Symmetric Tridiagonal Eigenvalue Solver Across
CPU Graphics Processing Unit (GPU) Nodes." Applied Sciences, 14(22), 10716.

Tomov, S., Dongarra, J., & Baboulin, M. (2010). "Towards dense linear algebra on graphics
hardware." International Conference on Supercomputing, 1-10.

Haidar, A., Dongarra, J., Solca, R., Tomov, S., Schulthess, T. C., & Yamazaki, I. (2012). "MAGMA:
A new generation of linear algebra libraries for GPU and multicore architectures." International
Conference on Supercomputing, 1-10.

Ralha, R. (2001). "An Efficient Parallel Algorithm for the Symmetric Tridiagonal Eigenvalue
Problem." Journal of Computational and Applied Mathematics, 131(1-2), 1-12.

Demmel, J. W., & Veseli¢, K. (1989). "Jacobi's method is more accurate than QR." SIAM Journal
on Matrix Analysis and Applications, 10(4), 512-534.

Chang, L.-W.,, Stratton, J. A,, Kim, H.-S., & Hwu, W.-M. W. (2012). "A scalable, numerically
stable, high-performance tridiagonal solver using GPUs." Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis (SC '12), Article
27,11 pages.

10) Dongarra, J., & Sorensen, D. C. (2002). "Computational Algorithms for Symmetric Tridiagonal

Eigenvalue Problems." Journal of Computational and Applied Mathematics, 138(1), 219-237.

11) Badia, J. M., Movilla, J. L., Climente, J. I, Castillo, M., Marqués, J. M., Mayo, R., & Quintana-

Orti, E. S. (2015). "A Blocked QR-Decomposition for the Symmetric Tridiagonal Eigenvalue
Problem on GPUs." Procedia Computer Science, 51, 2682-2686.



