
Copyright © 2008, Intel Corporation. All rights reserved.

Efficient dynamic parallelization for
linear algebra algorithms

Software and Services Group, Intel*, Novosibirsk

Alexander Kobotov

Oct 2008

* – Intel, Intel logo, Intel Core and Xeon are trademarks
of Intel Corporation in the U.S. and other countries.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Technical Collateral Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS
OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED
FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE
PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not
rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities
arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site(www.intel.com).

11/24/20082

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Agenda

• Introduction to dynamic parallelization

• QR and Cholesky factozations for dynamic parallelism

• Results achieved

11/24/20083

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Parallelization

Static – Work is distributed on entering a parallel
region.
+ Easy to implement

– Bad work balance (It is difficult to load threads equally)

Dynamic – Free thread gets next available piece of
work.
– Complex implementation (weak support in OpenMP 2.5, dependency

control)

– Synchronization costs

+ Good utilization of multi-core resources.

+ Adjusts with undetermined OS behavior and unknown efficiency of sub
algorithms

11/24/20084

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Dynamic scheduling is not a panacea

11/24/20085

1

2

3

4

5

6

7

8

9

Let’s try to adjust these 9 workloads to 3 threads*:

* - this is a common case for symmetric matrices
The number of workload is equal to estimated time in seconds.
Let assume that there are no dependencies between workloads.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Dynamic scheduling is not a panacea

11/24/20086

1 2 3

4 5 6

7 8 9

1

2

3

1

2

3

4

5

6

7

8

9

1

2

3

1

2

3

4

5

67

8

91

2

3

1

2

3

4

5

6

7

8

91

2

3

Simplest static (eq. OpenMP loop, schedule(static)):24 sec

Dynamic simple (eq. OpenMP loop, schedule(dynamic)):18 sec

Dynamic, getting heaviest one:16 sec

Best static, solving optimization task:15 sec

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Dynamic scheduling is not a panacea

11/24/20087

1 2 3

4 5 6

7 8 9

1

2

3

1

2

3

4

5

6

7

8

9

1

2

3

1

2

3

4

5

67

8

91

2

3

1

2

3

4

5

6

7

8

91

2

3

Simplest static (eq. OpenMP loop, schedule(static)):24 sec

Dynamic simple (eq. OpenMP loop, schedule(dynamic)):18 sec

Dynamic, getting heaviest one:16 sec

Best static, solving optimization task:15 sec

But this is an ideal world picture

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Dynamic scheduling is not a panacea,
but looks the best one if smart enough

11/24/20088

1

2

3

4 => 4.5

5

6 => 5.87 => 6.7

8

9 => 9.31

2

3

2

3

4 => 4.5

5

6 => 5.8

7 => 6.7

8

9 => 9.31

2

3

Dynamic, getting heaviest one:15.5 sec

Best static, solving optimization task:15.8 sec

Real workloads are difficult to measure due to:
• Influence of other OS processes
• Data/code cache misses/looses
• Data alignment
• Complicated low level code due to compiler optimizations
• Dependencies from machine configuration
• etc. etc.

1

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

A short intro to QR and Cholesky(LLT)
factorizations

11/24/20089

QR factorization of matrix A mxn:

A=QR

Q – orthogonal mxn и R – upper triangular nxn.

It’s stable and used for:

• Solving of linear systems with bad condition numbers

• Least squares

• In singular decomposition algorithm

FLOPS* numbers: (2/3)min(m,n)2(3max(m,n)-min(m,n))

or (4/3)n3 when m=n

















=

















x

xx

xxx

Q

xxx

xxx

xxx

* - (FLOPS) Floating Point Operations

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

A short intro to QR and Cholesky(LLT)
factorizations

Cholesky factorization of symmetric positive define matrix A nxn:

A = LLT or A = UUT

L is lower triangular, U is upper triangular.

Used for solving of system of linear equation:

• Twice less operations than in LU decomposition

• No permutations

• Only one matrix is on output

11/24/200810

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Direct acyclic graph for QR

Stage 2

Stage 3

Stage 1
2 2 2 2 2

1

2 2 2 2

2 2 2

1

1

1
QR factorization of panel

(DGEQRF) plus caculation of T

(DLARFT)

2 Applying of reflectors to

panel (DLARFB)
– –

11/24/200811

Matrix is split by panels.

An amount of stages should be
applied to every panel taking
into account the dependencies
shown on graph.

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Direct acyclic graph for Cholesky

TRF

1,1

trsm

1,2

trsm

1,3

trsm

1,4

TRF

2,2

syrk

2,2

gemm

2,3

gemm

2,4

trsm

2,3

trsm

2,4

TRF

3,3

syrk

3,3

syrk

3,3

gemm

3,4

trsm

3,4

gemm

3,4

TRF

4,4

syrk

4,4

syrk

4,4

syrk

4,4

Symmetrix matrix splitting

by blocks(tiles) to extract

parallel workloads

– is a workload

– is a dependency

11/24/200812

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Subtasks should be effective

To achieve highest performance for each subtask used:

• Merging neighbor subtasks in the beginning of execution – bigger blocks

allows higher performance

• Choosing a task from a queue with most recently touched data – cache
optimization

• Blocks of data to processor assignment – for NUMA

Graph flow optimizations:

• Tasks on critical path are first in order

• Then tasks more distant from the end

11/24/200813

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Organization of parallel flow

DAG.Init()

parallel do while(DAG.NotFinished()) private(task)

 critical

 task = DAG.GetTask()

 end critical

 do while(task)

 switch(task) {

 task1: …

 task2: …

 …:

 }

 task = DAG.CommitTask(task)

 end do

end parallel do

11/24/200814

Two roles:

• DAG object – knows what to do.
- Assigns a task
- Controls dependencies
- Optimizes execution flow

• Executive code – knows how to do.
- Owns parallel constructions
- Asks an object for tasks
- Perform assigned task

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Results

0

10

20

30

40

50

60

70

80

100 1000 10000

G
F

L
O

P
S

N

QR (dgeqrf) on 2xQuad-Core Intel® Xeon® Processor E5440

(12M Cache, 2.83 GHz, 1333 MHz FSB)

Intel® MKL 10.1 Beta2, 8 threads

NETLIB* blocked, 8 threads

NETLIB* blocked, 1 thread

NETLIB* level 2, 1 thread

* - NETLIB algorithm using optimized BLAS from Intel® MKL 10.1 Beta 2

11/24/200815

Performance tests and ratings are measured using
specific computer systems and/or components and
reflect the approximate performance of Intel

products as measured by those tests. Any
difference in system hardware or software design or

configuration may affect actual
performance. Buyers should consult other sources

of information to evaluate the performance of
systems or components they are considering
purchasing. For more information on performance

tests and on the performance of Intel products, visit
Intel Performance Benchmark Limitations

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Results

11/24/200816

Performance tests and ratings are measured using
specific computer systems and/or components and
reflect the approximate performance of Intel

products as measured by those tests. Any
difference in system hardware or software design or

configuration may affect actual
performance. Buyers should consult other sources

of information to evaluate the performance of
systems or components they are considering
purchasing. For more information on performance

tests and on the performance of Intel products, visit
Intel Performance Benchmark Limitations

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Results

11/24/200817

Performance tests and ratings are measured using
specific computer systems and/or components and
reflect the approximate performance of Intel

products as measured by those tests. Any
difference in system hardware or software design or

configuration may affect actual
performance. Buyers should consult other sources

of information to evaluate the performance of
systems or components they are considering
purchasing. For more information on performance

tests and on the performance of Intel products, visit
Intel Performance Benchmark Limitations

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

18

Cholesky scalability

Top speedups (rel. to 1 thread):
4 thr, compact 3.77x
4 thr, scatter 4.12x (86.3%)
8 thr, compact 6.62x
8 thr, scatter 8.01x
16 thr, compact 14.01x
16 thr, scatter 14.73x
24 thr 20.47x

• Scatter: scale over several sockets – more resources(cache,
bandwidth)

• Compact: several cores on one socket – receive less resources

• Full: load gives less bandwidth and cache than have one core =>
scalability limited if algorithm sensitive to at least one of these
resources

T
h
re
a
d
 1

T
h
re
a
d
 2

T
h
re
a
d
 1

T
h
re
a
d
 3

T
h
re
a
d
 2

T
h
re
a
d
 3

Performance tests and ratings are measured using
specific computer systems and/or components and
reflect the approximate performance of Intel

products as measured by those tests. Any
difference in system hardware or software design or

configuration may affect actual
performance. Buyers should consult other sources

of information to evaluate the performance of
systems or components they are considering
purchasing. For more information on performance

tests and on the performance of Intel products, visit
Intel Performance Benchmark Limitations

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Summary

• Dynamic parallelization implemented well appears to be the best one
on real shared memory machines.

• Adoption to dynamical parallelism of Cholesky and QR factorizations
allowed to achieve Intel® Math Kernel Library the highest performance
results.

11/24/200819

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

Q&A
Thanks for your attention

11/24/200820

Copyright © 2008, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners

Software and Services Group – Developer Products Division

21 11/24/2008

