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Agenda

• Introduction to dynamic parallelization

• QR and Cholesky factozations for dynamic parallelism

• Results achieved
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Parallelization

Static – Work is distributed on entering a parallel 
region.
+ Easy to implement

– Bad work balance (It is difficult to load threads equally) 

Dynamic – Free thread gets next available piece of 
work.
– Complex implementation (weak support in OpenMP 2.5, dependency 

control )

– Synchronization costs

+ Good utilization of multi-core resources.

+ Adjusts with undetermined OS behavior and unknown efficiency of sub 
algorithms
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Dynamic scheduling is not a panacea

11/24/20085

1

2

3

4

5

6

7

8

9

Let’s try to adjust these 9 workloads to 3 threads*:

* - this is a common case for symmetric matrices
The number of workload is equal to estimated time in seconds.
Let assume that there are no dependencies between workloads.
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Dynamic scheduling is not a panacea
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Simplest static (eq. OpenMP loop, schedule(static)):24 sec

Dynamic simple (eq. OpenMP loop, schedule(dynamic)):18 sec

Dynamic, getting heaviest one:16 sec

Best static, solving optimization task:15 sec
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Dynamic scheduling is not a panacea
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Simplest static (eq. OpenMP loop, schedule(static)):24 sec

Dynamic simple (eq. OpenMP loop, schedule(dynamic)):18 sec

Dynamic, getting heaviest one:16 sec

Best static, solving optimization task:15 sec

But this is an ideal world picture
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Dynamic scheduling is not a panacea,
but looks the best one if smart enough
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Dynamic, getting heaviest one:15.5 sec

Best static, solving optimization task:15.8 sec

Real workloads are difficult to measure due to:
• Influence of other OS processes
• Data/code cache misses/looses
• Data alignment
• Complicated low level code due to compiler optimizations
• Dependencies from machine configuration
• etc. etc.

1
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A short intro to QR and Cholesky(LLT) 
factorizations
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QR factorization of matrix A mxn:

A=QR

Q – orthogonal mxn и R – upper triangular nxn.

It’s stable and used for:

• Solving of linear systems with bad condition numbers

• Least squares

• In singular decomposition algorithm

FLOPS* numbers: (2/3)min(m,n)2(3max(m,n)-min(m,n))

or (4/3)n3 when m=n
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A short intro to QR and Cholesky(LLT) 
factorizations

Cholesky factorization of symmetric positive define matrix A nxn:

A = LLT or A = UUT

L is lower triangular, U is upper triangular.

Used for solving of system of linear equation:

• Twice less operations than in LU decomposition

• No permutations

• Only one matrix is on output
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Direct acyclic graph for QR

Stage 2

Stage 3

Stage 1
2 2 2 2 2

1

2 2 2 2

2 2 2

1
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1
QR factorization of panel 

(DGEQRF) plus caculation of T 

(DLARFT) 

2 Applying of reflectors to 

panel (DLARFB)
– –
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Matrix is split by panels.

An amount of stages should be 
applied to every panel taking 
into account the dependencies 
shown on graph.
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Direct acyclic graph for Cholesky
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parallel workloads

– is a workload

– is a dependency
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Subtasks should be effective

To achieve highest performance for each subtask used:

• Merging neighbor subtasks in the beginning of execution – bigger blocks 

allows higher performance

• Choosing a task from a queue with most recently touched data – cache 
optimization

• Blocks of data to processor assignment – for NUMA

Graph flow optimizations:

• Tasks on critical path are first in order

• Then tasks more distant from the end

11/24/200813
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Organization of parallel flow

DAG.Init() 

parallel do while( DAG.NotFinished() ) private( task ) 

    critical  

 task = DAG.GetTask() 

    end critical 

    do while( task ) 

        switch( task ) { 

            task1: … 

            task2: … 

            …:  

        } 

        task = DAG.CommitTask( task ) 

     end do  

end parallel do 
 

11/24/200814

Two roles:

• DAG object – knows what to do.
- Assigns a task
- Controls dependencies
- Optimizes execution flow

• Executive code – knows how to do.
- Owns parallel constructions
- Asks an object for tasks
- Perform assigned task
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Results
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QR (dgeqrf) on 2xQuad-Core Intel® Xeon® Processor E5440 

(12M Cache, 2.83 GHz, 1333 MHz FSB) 

Intel® MKL 10.1 Beta2, 8 threads

NETLIB* blocked, 8 threads

NETLIB* blocked, 1 thread

NETLIB* level 2, 1 thread

* - NETLIB algorithm using optimized BLAS from Intel® MKL 10.1 Beta 2 
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Results
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Cholesky scalability

Top speedups (rel. to 1 thread):
4 thr, compact 3.77x
4 thr, scatter 4.12x (86.3%)
8 thr, compact 6.62x
8 thr, scatter 8.01x
16 thr, compact 14.01x
16 thr, scatter 14.73x
24 thr 20.47x

• Scatter: scale over several sockets – more resources(cache, 
bandwidth)

• Compact: several cores on one socket – receive less resources

• Full: load gives less bandwidth and cache than have one core =>
scalability limited if  algorithm sensitive to at least one of these 
resources
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Summary

• Dynamic parallelization implemented well appears to be the best one 
on real shared memory machines.

• Adoption to dynamical parallelism of Cholesky and QR  factorizations 
allowed to achieve Intel® Math Kernel Library the highest performance 
results.
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Q&A
Thanks for your attention
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