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Parallel programming

• Shared memory gets more popular 

– Multi-core is getting momentum

– 2-socket workstations for maximum desktop performance

– Hyper-threading is back

• Shared resources access may be a bottle-neck

– Locks required to avoid races

– Single global lock is simple, but limiting

– Fine-grain locks may provide best scalability

– Fine-grain locks are hard to design, implement and test

– Poor implementation is error-prone and limiting

– Locks are not composable
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What is transactional memory

• Syntax:

__tm_atomic {

// transaction code goes here

}

• Semantics:

– Isolation: effects are localized

– Atomicity: commit or rollback

– Retry if data conflict is detected

– Publication and privatization safety

– Composability via nesting

– Fine-grain: based on data accesses
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Example: Insert Node into a link list

{ 
new_node->prev = node;

new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node; 

}
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Example: Insert Node into a link list

Thread 1 Thread 2

{ 
new_node->prev = node;

new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node; 

}



6Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed  as the property of others

Example: Insert Node into a link list

Lock { 
new_node->prev = node; 
new_node->next = node->next; 
node->next->prev = new_node; 
node->next = new_node; 

} 

Lock { 
new_node->prev = node; 
new_node->next = node->next; 
node->next->prev = new_node; 
node->next = new_node; 

} 

Thread 1

Thread 2

Single global lock

get lock and execute

waits for lock to be 
released
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Example: Insert Node into a link list

__tm_atomic { 
new_node->prev = node; 
new_node->next = node->next; 
node->next->prev = new_node; 
node->next = new_node; 

} 

__tm_atomic { 
new_node->prev = node; 
new_node->next = node->next; 
node->next->prev = new_node; 
node->next = new_node; 

} 

Thread 1 Thread 2

Both threads execute in parallel, if they write to same 
node then abort and retry one of transactions

TM Based
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Transactional memory overview

• Fine-grain concurrency management without locks
– Concurrent readers are welcome

– Re-execute entire transaction if conflict is detected

• Simple syntax and semantics
– Looks and behaves like single global lock

– Simpler create race-free programs

• Possible implementations
– Purely software (STM)

– Software with HW acceleration (HaSTM)

– Separate HW and SW (HyTM)

– HW-based with TX size restrictions (RTM)

– HW-based for short transactions, software for unbounded (VTM)

• No TM hardware is out yet
– SUN* ROCK* planned to be released next year

– AMD* has published spec for TM H/W assistance
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Software transactional memory

• Weak atomicity: guarantees are only for 
transactional code
– Same as for locks

• Unbounded: transactions of arbitrary size are 
supported
– HW resources (memory) is the limit

• Instrumentation of memory accesses is required 
within transactions
– Spatial and performance overhead

– Including called functions

– Not always possible

– Different data and contention management techniques

– Object based or word-based depending on language
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Intel STM implementation

• C/C++ Compiler + run-time library

• Word-based STM system

• Close nesting

• Failure atomicity (__tm_abort)

• Irrevocable execution support for I/O and legacy

• Support for C++ constructs 

• Highly optimized
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Intel STM compiler

• Language extensions
– Basic constructs
– Functions and classes annotation
– Failure atomicity

• Instrumentation to library calls
– Transaction boundaries
– Memory accesses
– Function calls

• Integration with existing language constructs
– Calls direct and indirect, OpenMP
– C++: EH, OOP, templates

• Optimizations
– Optimized memory instrumentation
– Annotations propagation
– TM mode based on transaction properties
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Intel STM library

• Comprehensive and flexible ABI

– Supports various STM implementations

– Allows compiler optimizations

• Effective contention management with switchable strategies

– In-place updates

– 2 dynamically interchangeable strategies

– Effective implementation

– Additional obstinate mode for long transactions

• Irrevocable execution support

• Failure atomicity support for local data

• Nesting support with local aborts

• Special handling for memory allocation and copying
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Example

__declcpec(tm_callable)

foo();

//...

__tm_atomic {

foo(++c);

}

Label:

action = StartTX();

if (action & restoreLiveVariables)

liveX = saved_liveX;

if (action & retryTransaction)  

goto Label;

else if (action & saveLiveVariables)

saved_liveX = liveX;

if (action & InstrumentedCode) {

temp = ReadInt(c);

temp = temp + 1;

WriteInt(c);

foo_$TXN(c); // TM-version of foo

} else {

c = c + 1;

foo(c);

}

CommitTX();



14Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed  as the property of others

Performance data (SPLASH2 benchmarks)
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Performance of STM depends highly on workload
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Performance analysis

• For many workloads STM outperforms Single Global Lock 

– On 8 or more threads

– Results still lower than Fine Grain Locks

– More optimizations and improvements  are on the way

• RAYTRACE is and example where ceiling is hit

– When all 8 threads are running the HW is 100% busy and thus STM code 
increases the machine load beyond the limit and performance drops 

– Picture is quite different for 8T on 16-way HW, but for 16T is the same

– Optimization to run short transactions 
in Global Lock mode helps much to this
benchmark

• Optimizations are not good for 
all benchmarks: RADIOSYTY performs 
best  in pure STM runs
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Conclusion

• Pros

– Simple programming model

– Composability

– Failure atomicity

– Decent scalability at 8 threads and beyond for many workloads

– Popular paradigm in modern HPC languages

• Fortress* (SUN*), X10* (IBM*), Chapel* (Cray Inc.*)

• Cons

– Overhead

– Profitability highly depend on workload

– Retries eat power

• Intel C/C++ STM compiler prototype edition is publicly available at 
http://whaif.intel.com

– Includes Intel STM library

– Documentation is also available

– Active discussion forum for questions and comments
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Q&A


