
USE OF TRANSACTIONAL MEMORY
TO SIMPLIFY

SHARED-MEMORY
PARALLEL PROGRAMMING

Serge Preis, Ravi Narayanaswami

Intel Corporation

2Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Parallel programming

• Shared memory gets more popular

– Multi-core is getting momentum

– 2-socket workstations for maximum desktop performance

– Hyper-threading is back

• Shared resources access may be a bottle-neck

– Locks required to avoid races

– Single global lock is simple, but limiting

– Fine-grain locks may provide best scalability

– Fine-grain locks are hard to design, implement and test

– Poor implementation is error-prone and limiting

– Locks are not composable

3Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

What is transactional memory

• Syntax:

__tm_atomic {

// transaction code goes here

}

• Semantics:

– Isolation: effects are localized

– Atomicity: commit or rollback

– Retry if data conflict is detected

– Publication and privatization safety

– Composability via nesting

– Fine-grain: based on data accesses

4Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Example: Insert Node into a link list

{
new_node->prev = node;

new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node;

}

5Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Example: Insert Node into a link list

Thread 1 Thread 2

{
new_node->prev = node;

new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node;

}

6Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Example: Insert Node into a link list

Lock {
new_node->prev = node;
new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node;

}

Lock {
new_node->prev = node;
new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node;

}

Thread 1

Thread 2

Single global lock

get lock and execute

waits for lock to be
released

7Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Example: Insert Node into a link list

__tm_atomic {
new_node->prev = node;
new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node;

}

__tm_atomic {
new_node->prev = node;
new_node->next = node->next;
node->next->prev = new_node;
node->next = new_node;

}

Thread 1 Thread 2

Both threads execute in parallel, if they write to same
node then abort and retry one of transactions

TM Based

8Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Transactional memory overview

• Fine-grain concurrency management without locks
– Concurrent readers are welcome

– Re-execute entire transaction if conflict is detected

• Simple syntax and semantics
– Looks and behaves like single global lock

– Simpler create race-free programs

• Possible implementations
– Purely software (STM)

– Software with HW acceleration (HaSTM)

– Separate HW and SW (HyTM)

– HW-based with TX size restrictions (RTM)

– HW-based for short transactions, software for unbounded (VTM)

• No TM hardware is out yet
– SUN* ROCK* planned to be released next year

– AMD* has published spec for TM H/W assistance

9Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Software transactional memory

• Weak atomicity: guarantees are only for
transactional code
– Same as for locks

• Unbounded: transactions of arbitrary size are
supported
– HW resources (memory) is the limit

• Instrumentation of memory accesses is required
within transactions
– Spatial and performance overhead

– Including called functions

– Not always possible

– Different data and contention management techniques

– Object based or word-based depending on language

10Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Intel STM implementation

• C/C++ Compiler + run-time library

• Word-based STM system

• Close nesting

• Failure atomicity (__tm_abort)

• Irrevocable execution support for I/O and legacy

• Support for C++ constructs

• Highly optimized

11Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Intel STM compiler

• Language extensions
– Basic constructs
– Functions and classes annotation
– Failure atomicity

• Instrumentation to library calls
– Transaction boundaries
– Memory accesses
– Function calls

• Integration with existing language constructs
– Calls direct and indirect, OpenMP
– C++: EH, OOP, templates

• Optimizations
– Optimized memory instrumentation
– Annotations propagation
– TM mode based on transaction properties

12Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Intel STM library

• Comprehensive and flexible ABI

– Supports various STM implementations

– Allows compiler optimizations

• Effective contention management with switchable strategies

– In-place updates

– 2 dynamically interchangeable strategies

– Effective implementation

– Additional obstinate mode for long transactions

• Irrevocable execution support

• Failure atomicity support for local data

• Nesting support with local aborts

• Special handling for memory allocation and copying

13Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Example

__declcpec(tm_callable)

foo();

//...

__tm_atomic {

foo(++c);

}

Label:

action = StartTX();

if (action & restoreLiveVariables)

liveX = saved_liveX;

if (action & retryTransaction)

goto Label;

else if (action & saveLiveVariables)

saved_liveX = liveX;

if (action & InstrumentedCode) {

temp = ReadInt(c);

temp = temp + 1;

WriteInt(c);

foo_$TXN(c); // TM-version of foo

} else {

c = c + 1;

foo(c);

}

CommitTX();

14Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Performance data (SPLASH2 benchmarks)

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

1T 2T 4T 8T

FGL

STM

GLOCK

Speedup vs. serial execution on 8T

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

B
A

R
N

E
S

C
H

O
L

E
S

K
Y

F
F

T

F
M

M

R
A

D
IO

S
IT

Y

R
A

Y
T

R
A

C
E

G
E

O
M

E
A

N

FGL

STM

GLOCK

Scalability of BARNESS benchmark

Performance of STM depends highly on workload

15Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Performance analysis

• For many workloads STM outperforms Single Global Lock

– On 8 or more threads

– Results still lower than Fine Grain Locks

– More optimizations and improvements are on the way

• RAYTRACE is and example where ceiling is hit

– When all 8 threads are running the HW is 100% busy and thus STM code
increases the machine load beyond the limit and performance drops

– Picture is quite different for 8T on 16-way HW, but for 16T is the same

– Optimization to run short transactions
in Global Lock mode helps much to this
benchmark

• Optimizations are not good for
all benchmarks: RADIOSYTY performs
best in pure STM runs

0.000

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

B
A

R
N

E
S

C
H

O
L

E
S

K
Y

F
F

T

F
M

M
R

A
D

IO
S

IT
Y

R
A

Y
T

R
A

C
E

G
E

O
M

E
A

N

FGL

STM

GLOCK

Small transactions optimization is ON

16Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Conclusion

• Pros

– Simple programming model

– Composability

– Failure atomicity

– Decent scalability at 8 threads and beyond for many workloads

– Popular paradigm in modern HPC languages

• Fortress* (SUN*), X10* (IBM*), Chapel* (Cray Inc.*)

• Cons

– Overhead

– Profitability highly depend on workload

– Retries eat power

• Intel C/C++ STM compiler prototype edition is publicly available at
http://whaif.intel.com

– Includes Intel STM library

– Documentation is also available

– Active discussion forum for questions and comments

17Software and services group
Copyright © 2008, Intel Corporation. All rights reserved.
* Other names and brands may be claimed as the property of others

Q&A

