Знания-Онтологии-Теории (ЗОНТ-09)

Формирование Стратегии Обучения в Интеллектуальной Обучающей Системе на Основе Обработки Модели Данных и Знаний

A.P. Axaтов¹, О.Ж. Бобомурадов²

¹Самаркандский государственный университет, Университетский бульвар 15, г. Самарканд, 140104, Узбекистан.

²Институт математики и информационных технологий АН РУз, Дурмон йули 29, г.Ташкент, 100125, Узбекистан

Ozod_b_76@mail.ru, akmalar@rambler.ru

Аннотация. В работе рассматриваются вопросы построения модели состояния обучаемого и определения стратегии обучения, а также формирования полнотекстового учебного материала с обеспечением достоверности текстовой информации на основе методов искусственной избыточности.

Ключевые слова: интеллектуальная обучающая система, обучаемый, стратегия обучения, база данных, база знаний, модель, управление обучением, избыточность, поразрядное суммирование.

1 Введение

Современные информационные технологии находят широкое применение в процессах обучения. Появляются разные взгляды и подходы к их использованию. Развитие информационных технологий способствует быстрым изменениям в сфере обучения, в том числе, за счет интеллектуализации. Построение интеллектуальных систем обучения опирается на новые информационные технологии, включающие в себя разного рода программные средства, методики и нормативы, мультимедийные технологии, визуализацию программных языков, универсализацию компьютерных систем и т.п. Сказанное наглядно может быть показано на примере обучения с использованием электронных учебных пособий [1].

Использование интеллектуальных средств адаптации текущего содержания изучаемого материала (фрагмента электронного учебного пособия) и стратегии управления обучением в соответствии со степенью усвоения изучаемого материала обучаемым является одной из основных задач при разработке компьютерных обучающих систем и электронных учебных пособий.

В связи с этим, интеллектуализация обучающих систем и электронных учебников и пособий, а также организация с их помощью управления процессом обучения является актуальной проблемой.

С целью упрощения реализации содержимое интеллектуального электронного пособия (ИЭП) представляется в системе обучения в виде информационных моделей двух типов: модели данных и модели знаний. В любых информационных системах обработка и достоверность информации является важной компонентой. При формировании полнотекстового материала часто допускаются некорректности ввода информации. В настоящей работе приведены результаты исследований и разработок для описания предметной области системы обучения в модели данных и знаний и обеспечения достоверности информации при представлении материала в базе данных (БД).

2 Принципы построения модели данных и знаний интеллектуальной обучающей системы (ИОС).

Модель знаний - это фреймо-семантическая модель электронного материала, а также правила и процедуры оценки и диагностики уровня усвоения анализа и формирования логических заключений о причинах неправильных представлений обучаемого по соответствующему вопросу, определения стратегий очередного этапа обучения, формирования объёма и содержания учебно-методического материала на очередной этап. Модель знаний хранится в базе знаний (БЗ).

Построение ИЭП в соответствии с рассмотренной моделью предусматривает использование идеологии, методов и средств экспертных систем (ЭС) [2,3].

Модель знаний (МЗ) полного текста ИЭП представляется в виде ориентированного графа $\Gamma = I = \left\{ A_i, G_{ik} \right\},\,$

где A_i — множество вершин, отражающих номера структурно-содержательных частей пособия (частей, разделов, глав, параграфов, подпараграфов и т.д); G_{ik} - множество дуг, характеризующих содержательно-логические взаимосвязи между i-й и k-й вершинами.

В свою очередь, граф полного текста ИЭП состоит из множества подграфов, т.е.

$$I = I_{ji_i}$$
,

где I_{ji_i} - подграфы, отражающие модели соответствующих содержательных частей ИЭП, т.е. $\mathbf{i_j}$ – раздела, j – уровня. Подразделы I_{ii} являются частными графами, вложенными в полный

В БД ИЭП, как правило, представляется в виде реляционной модели

граф модели знаний пособия.

$$D = \{D_{1t_1}(D_{2t_2}(...(D_{jt_i}(...(D_{nm})...)))\},$$

где D_{ji_j} - полнотекстовая модель $\mathbf{i_j}$ - раздела \mathbf{j} - го уровня ИЭП (например, $\mathbf{i_j}$ - параграф, \mathbf{j} глава).

Между моделями данных (МД) D и знаний в модели полного текста ИЭП (1), а также между их фрагментами обеспечивается взаимно однозначное отображение

$$D \Leftrightarrow I,$$

$$D_{ii} \Leftrightarrow I_{ii}.$$
(2)

Для каждого очередного t-го этапа изучения дисциплины ИСО формирует модель I_t требуемого для этого этапа фрагмента ИЭП, логически вытекающего из результатов анализа оценок и диагностики уровня усвоения обучаемым пройденного материала (т.е. оценки ситуации S_t обучения перед t-м этапом), а также выбранной стратегии обучения для t-го этапа (стратегии R_t).

В БЗ формируется множество типовых ситуаций обучения $\{S_i^t\}$, которым поставлены в соответствие множество типовых стратегий обучения $\{R_1^i\}$. Эти отношения отражаются множеством правил продукций

$$\left\{S_t^i\right\} \Leftrightarrow \left\{R_t^i\right\} \tag{3}$$

Обычно каждой типовой ситуации S_t^i может соответствовать несколько стратегий обучения $(R^{il}_{b}, R^{i2}_{b}, ..., R^{in}_{t})$. Из них следует выбрать наиболее приемлемую стратегию R^*_{t} для конкретной текущей ситуации S^{i*}_{t} , значение которой близко к некоторой типовой ситуации S^{ik}_{t} . Выбор стратегии R_t^* производится в соответствии с выражением $R_t^* = F_R \left[\alpha(S_t, R_t^i), S_t \right],$

$$R_t^* = F_R \left[\alpha(S_t, R_t^i), S_t \right], \tag{4}$$

где α ($S_b R_b^i$) — значение степени предпочтения выбора стратегии R_t^i в ситуации S_t , а сама R_t^* выделяется по наибольшему значению $\alpha(S_t R_t^i)$ [2,5].

3 Методы определения стратегии обучения в ИОС.

В ИОС представление ИЭП и организация процесса обучения осуществляются на основе суждений, оценок и заключений экспертов, обладающих профессионализмом и мастерством высококвалифицированных педагогов по соответствующим дисциплинам.

На основании заключений эксперта можно определить учебную порцию для обучаемого. Здесь, S_t может выступать как средство, воздействующее на состояние, уровень сложности и состояние среды. Для учета этих средств необходимо определить состояние обучаемого с помощью тестового опроса t_i [2,4].

В БД организуется формирование необходимой порции учебного материала, соответствующего стратегии R_t^* для разных состояний.

Точное значение типа R_t^* для обучаемого находится после выбора соответствующего состояния путем проверки сопоставлений. Если выбранная стратегия R_t^* находится между какими-то (отраженными в базе знаний) R_t^l и R_t^m , то при выборе нужной стратегии формируются множества вида R_t^l и R_t^m .

Расположение этих множеств может быть произвольным, например, заданным в виде множеств $R_t^l = \{x_i\}$ и $R_t^m = \{y_j\}$, где $x_i = (x_{i1}, x_{i2}, ..., x_{in})$ и $y_j = (y_{j1}, y_{j2}, ..., y_{jn})$ $i = \overline{1, r}$, $j = \overline{1, m}$

Для текущего состояния опорные точки вычисляются следующим образом:

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{r}$$
; $\overline{y} = \sum_{j=1}^{n} \frac{y_j}{m}$.

После определения опорной точки, вычисляется расстояния между элементами множеств:

$$(x,y) = \sqrt{\sum_{i=1}^{n} (x_i + y_i)^2}$$

После вычисления ω , например в виде $\omega = (\omega, \overline{x}) < (\omega, \overline{y})$, на основе решающего правила уточняем множество:

$$L(x,X) = \min_{i=1,m} L(x,X)$$
(5)

Остальные состояния реализуются в заданном порядке.

4 Принципы обработки информации в модели данных.

Модель данных, хранящаяся в БД представляет собой полнотекстовую информацию всего учебно-методического материала по данной дисциплине. Основными задачами модели являются корректное представление максимально полного материала по изучаемой дисциплине и демонстрация материала мультимедиа - средствами. При этом используются технологии, позволяющие извлекать нужную информацию, проводить интеллектуальный анализ данных, создавать средства поиска закономерностей, извлекать знания, анализировать базы данных, т.к. модель данных должна производить обработку полнотекстовых материалов в любых форматах, представленных в виде отсканированных бумажных документов, web-страниц, графических изображений, чертежей, видеофайлов и т.д. Критериями качества работы модели данных являются обеспечение целостности, сохранности и достоверности информационных ресурсов. Соблюдение требований этих критериев, особенно достоверности связано с тем, что при подготовке первичной информации из-за сбоев и отказов в работе технических средств, различного рода помех аппаратных устройств, ошибок операторов информация может стать недостаточно достоверной. Ошибки могут возникать на этапах записи в память ЭВМ, сканирования, перезаписи информации с одного вида носителей информации на другой. Искажения в информации не только снижают точность решения задач, но и влекут за собой ошибочный результат, а следовательно, неверное решение, причем, этап ввода информации считается самой ненадежной частью информационного процесса. Статистикой подтверждается, что наибольшее значение вероятности искажений принадлежит средствам сканирования и $(\approx 10^{-2})$ и человеку-оператору $(\approx 10^{-3})$ и распознавания неудовлетворительны для практики обработки информации [1,6]. В связи с этим, разработка методов контроля, направленных на обнаружение и исправление ошибок, в первую очередь, на этапах ввода и подготовки информации, остается до сих пор весьма актуальной и нерешенной задачей.

Для устранения ошибок отмеченных видов проведены специальные исследования для построения теоретической и практической основы применения программных методов контроля достоверности информации [7].

5 Использование искусственной избыточности в методе поразрядного суммирования.

Рассмотрим разработанный нами метод поразрядного суммирования. Будем считать,

что последовательность сообщений состоит из m информационных символов и для контроля достоверности используется n контрольных сумм. Для этого последовательность $a_1, a_2, \ldots, a_i, \ldots, a_l, \ldots$ делится на равные группы, включающие m символов каждая. Количество контролируемых символов определяется по формуле $m = C_n^1 + C_n^2 + \cdots + C_n^{n-1}$, где n — число контрольных сумм.

Требуется, чтобы алгоритм контроля информации путем суммирования мог установить не только наличие ошибки в принятой последовательности, но и указать номер позиции, в которой произошла ошибка для автоматического исправления.

Для простоты представления результатов исследований изложим работу метода при n=4. Обозначим через a_i символ i-го разряда в проверяемой последовательности (i=1,m), а через S_j j-ю контрольную сумму (j=1,4). Будем считать количество контролируемых символов в передаваемой последовательности m=14.

Контрольные суммы передаваемой последовательности данных вычисляются по схеме

$$S_{1}^{0} = a_{1} + a_{5} + a_{6} + a_{7} + a_{11} + a_{12} + a_{13}$$

$$S_{2}^{0} = a_{2} + a_{5} + a_{8} + a_{9} + a_{11} + a_{12} + a_{14}$$

$$S_{3}^{0} = a_{3} + a_{6} + a_{8} + a_{10} + a_{11} + a_{13} + a_{14}$$

$$S_{4}^{0} = a_{4} + a_{7} + a_{9} + a_{10} + a_{12} + a_{13} + a_{14}$$
(6)

в связи с чем образуются новые последовательности символов с учетом контрольных сумм

$$a_1, a_2, \dots, a_i, \dots a_{14}, S_1^0, S_2^0, S_3^0, S_4^0$$
 (7)

По схеме (6) вычисляются контрольные суммы $(S_j^{\mathfrak{I}})$ принятой последовательности и сравниваются с суммами $S_j^{\mathfrak{I}}$:

$$\Delta S_j = S_j^0 - S_j^{\mathcal{I}}, \quad (j = 1 \div 4).$$

Полученные разности контрольных сумм используются для контроля, обнаружения и исправления ошибочных символов.

Контроль достоверности информации осуществляется на основе пяти правил, изложенных в [8]: π_1 – общее правило контроля достоверности информации; π_2 – обнаружение и исправление однократных транспозиционных ошибок; π_3 – обнаружение и исправление двукратных смежных транспозиционных ошибок; π_4 – обнаружение ошибок типа пропуск или добавление дополнительного символа в строке; π_5 – обнаружение случайных символьных ошибок более высокой кратности.

Исследованы эффективность и предельные возможности метода контроля информации при использовании этих правил. Установлено, что при построении алгоритмов контроля информации по правилам π_2 , π_3 и π_5 ошибки не обнаруживаются в следующих случаях:

- когда одновременно искажаются один, два, три и т.д. символов a_i и соответствующие им контрольные суммы S_i ;
- при искажении значение символа a_i увеличивается на некоторую величину и сумма S_j уменьшится на эту же величину.

В качестве критерия эффективности метода принят критерий вероятности необнаруженных ошибок. Тогда, эффективность алгоритмов, построенных по правилу π_2 равна

$$P_H^1=67mnp^2\left(1-p\right)^{m+n-2};$$
 по правилу π_3 -
$$P_H^2=67\Big[C_m^2C_n^2p^4\big(1-p\big)^{m+n-4}\Big];$$
 по правилу π_5 -
$$P_H^3=67\Big[C_m^kC_n^3p^{3k}\big(1-p\big)^{m+n-k-3}\Big],$$

где k – кратность ошибок (k > 2).

По правилу π_4 форматные ошибки не обнаруживаются, когда происходят «пропуск» и «добавление» символов одновременно. Вероятность ошибок типа «пропуск» или «добавление» символов человека-оператора принята равной $P=2,4\cdot 10^{-3}$ ош/знак. Учитывая это, получаем вероятность необнаружения форматных ошибок: $P_H^4=5,76\cdot 10^{-6}$ ош/знак.

Суммарная вероятность необнаруженных ошибок рассматриваемых правил контроля информации определяется

$$P_{H} = P_{H}^{1} + P_{H}^{2} + P_{H}^{3} + P_{H}^{4} = \{67[mnp^{2}(1-p)^{m+n-2} + C_{m}^{2}C_{n}^{2}p^{4}(1-p)^{m+n-4} + C_{m}^{k}C_{n}^{3}p^{3k}(1-p)^{m+n-k-3}\} + 5,76 \cdot 10^{-6}$$

Таким образом, при применении разработанного метода вероятность необнаруженных ошибок составит $P_H \approx 10^{-5} - 10^{-6}$. При этом обнаруживаются и исправляются все ошибки типа однократных транспозиционных и двукратных смежных транспозиционных.

6 Заключение

Предложенная методика реализации функционально – логических и дидактических возможностей ИЭП, по которой полнотекстовый учебный материал, содержащийся в МД, формируется на основе методов автоматического обнаружения и исправления ошибок на этапах ввода и подготовки, а оценка состояния обучаемого и последующее формирование стратегии обучения осуществляются на основе анализа и обработки МЗ, позволяет создать эффективную среду обучения, а также обеспечить достоверную передачу порции учебного материала.

Отметим, что за рамками настоящей работы остается нерассмотренным круг вопросов, связанных с использованием структурно-технологической и программно-временной избыточности для повышения достоверности обработки текстов при формировании МД, а также методов нечеткой кластеризации и распознавания при оценке состояний обучаемого и формировании стратегии обучения.

Литература

- [1] Бобомуродов О.Ж., Ахатов А.Р.: Обработка информации в системах приобретения знаний. Издательство «ФАН» АН РУз, 2009г., 136с.
- [2]Bekmuratov T.F., Bobomurodov O.J., Dadaboeva R.A.: The level of projection and modeling intelligent teaching programs. WCIS-2004, Tashkent, 2004, p.13-16.
- [3]Петрушин В.А.: Интеллектуальные обучающие системы: архитектура и методы реализации. Техническая кибернетика, №2, 1993г.
- [4]Ю.И.Журавлев, М.М.Камилов, Ш.Е.Туляганов.: Алгоритмы вычисления оценок и их применение. Ташкент, изд-во: «Фан», 1974. 120 с
- [5] Нишанов А.Х., Туляганов Ш.Е., Бобомуродов О.Ж., Худайбердиев М.Х.: Распознавания и адаптация для дистанционного образования. Математические Методы Распознавания Образов/Доклады XI Всероссийской конференции. Москва, 2003, с.387-389.
- [6] Ахатов А.Р.: Методы и алгоритмы обеспечения достоверности текстовой информации на основе статистической избыточности. Журнал Вестник ТашГТУ, №2, 2007, ТГТУ, Ташкент, с.41-44.
- [7] Ахатов А.Р., Жуманов И.И.: Алгоритм контроля качества текстов в системах электронного документооборота. Журнал «Вестник ТУИТ», №2/2007, Ташкент, с. 68-72.
- [8] Ахатов А.Р.: Программные методы контроля достоверности в структуре пакетов передачи данных. Естественные и технические науки, Москва, №3, 2008г., стр.310-318.