PARTIALLY INTEGRAL OPERATORS WITH BOUNDED KERNELS

Yu. Kh. Eshkabilov

Let $\Omega = [a,b]^{\nu}$ and let T be a partially integral operator defined in $L_2(\Omega^2)$ as follows:

$$(Tf)(x,y) = \int_{\Omega} q(x,s,y)f(s,y) \, d\mu(s).$$

In the article, we study the solvability of the partially integral Fredholm equations $f - \varkappa T f = g$, where $g \in L_2(\Omega^2)$ is a given function and $\varkappa \in \mathbb{C}$. The notion of determinant (which is a measurable function on Ω) is introduced for the operator $E - \varkappa T$, with E is the identity operator in $L_2(\Omega^2)$. Some theorems on the spectrum of a bounded operator Tare proven.

Key words and phrases: partially integral operator, partially integral equation, integral Fredholm equation, Fredholm determinant, Fredholm minor, spectrum, limit spectrum, point spectrum.

Eshkabilov Yusup Khalbaevich

National University of Uzbekistan, Tashkent, 100174 Uzbekistan. E-mail: yusup62@rambler.ru Received April 18, 2007

Translated into English:

Siberian Advances in Mathematics, V. 19, N 3, 151–161 (2009).

© Yu. Kh. Eshkabilov; 2008