A RIEMANN–HILBERT PROBLEM FOR THE MOISIL–TEODORESCU SYSTEM

A. N. Polkovnikov and N. Tarkhanov

In a bounded domain with smooth boundary in \mathbb{R}^3 we consider the stationary Maxwell equations for a function u with values in \mathbb{R}^3 subject to a nonhomogeneous condition $(u, v)_x = u_0$ on the boundary, where v is a given vector field and u_0 a function on the boundary. We specify this problem within the framework of the Riemann-Hilbert boundary value problems for the Moisil-Teodorescu system. This latter is proved to satisfy the Shapiro-Lopatinskij condition if an only if the vector v is at no point tangent to the boundary. The Riemann-Hilbert problem for the Moisil-Teodorescu system fails to possess an adjoint boundary value problem with respect to the Green formula, which satisfies the Shapiro-Lopatinskij condition. We develop the construction of Green formula to get a proper concept of adjoint boundary value problem.

Key words and phrases: Dirac operator, Riemann–Hilbert problem, Fredholm operators.

Polkovnikov Alexsandr Nikolaevich	Received
Siberian Federal University,	September 1, 2017
Institute of Mathematics	Revised
and Computer Science,	January 17, 2018
Krasnoyarsk, 660041 Russia.	Accepted
E-mail: paskaattt@yandex.ru	March 22, 2018

Tarkhanov Nikolai

Institut für Mathematik, Universität Potsdam, Karl-Liebknecht-Str. 24/25, Potsdam, 14476 GERMANY. E-mail: tarkhanov@math.uni-potsdam.de

Translated into English:

Siberian Advances in Mathematics, V. 28, N 3, 207–232 (2018). DOI: 10.3103/S1055134418030057

[©] A. N. Polkovnikov and N. Tarkhanov; 2018