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TOTALLY BALANCED AND EXPONENTIALLY

BALANCED GRAY CODES

A. J. van Zanten, I. N. Suparta∗)

The method of Robinson and Cohn to construct balanced and totally
balanced Gray codes is discussed, as well as the extended version of this
method by Bhat and Savage. We introduce a slight generalization of
their construction which enables us to prove a long standing conjecture
of Wagner and West about the existence of Gray codes having a specific
spectrum of transition counts, i. e., all transition counts are powers of 2
and the exponents of these powers differ at most 1. Such a Gray code
can be considered as generalization of a totally balanced Gray code when
the length of the codewords is not a 2-power.

1. Introduction

A Gray code of length n is an ordered list of 2n n-bit strings (codewords)
such that successive codewords differ in exactly one bit position. In this
paper, G(n) stands for a binary Gray code of length n. A comprehensive
review of Gray codes can be found in [7]. The best known example of a Gray
code is the binary reflected Gray code which is defined recursively as

G(1) = 0, 1; G(n) := 0G(n − 1), 1GR(n − 1), (1)

where iG(n− 1) is the list G(n− 1) such that each codeword is preceded by
the integer i ∈ {0, 1} and GR(n − 1) stands for the list G(n − 1) in reversed
order. This code is sometimes referred to as the standard Gray code; in this
paper we shall denote it by Gst(n). Thus, the standard Gray code Gst(2) of
length 2 is equal to the list 00, 01, 11, 10, and the one of length 3 is the list
000, 001, 011, 010, 110, 111, 101, 100.

If the last codeword of a Gray code also differs in only one bit position
from the first codeword, we call the Gray code cyclic, and otherwise non-

cyclic. So, the standard Gray code is a cyclic code.
We shall index the codewords in the list of a Gray code of length n from

0 until 2n − 1 and denote the ith codeword by gi. If G(n) is a cyclic code,
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we shall identify g2n and g0. The bit positions will be labeled from right

to left by 1, 2, . . . , n. The integer si ∈ [n] := {1, 2, . . . , n}, indicating which
bit position changes when going from the codeword gi−1 to gi, is called
the transition number of the codeword gi−1. The ordered sequence of all
transition numbers of a Gray code is called the transition sequence of the
code and denoted by Sn. Thus, the transition sequence Sn of a Gray code
of length n is equal to the sequence s1, s2, . . . , s2n−1, s2n if G(n) is a cyclic
code, and it is equal to s1, s2, . . . , s2n−1 if G(n) is a non-cyclic code. Here
s2n is the transition number of the last codeword when going to the first
codeword of G(n). Thus, the transition sequence of the standard Gray code
of length 3 is S3 = 1, 2, 1, 3, 1, 2, 1, 3. In general, the transition sequence Sn

of the standard Gray code Gst(n) can be defined recursively by

S′
1 = 1, S′

n = S′
n−1, n, S′

n−1, Sn = S′
n, n, (2)

where S′
n stands for the transition sequence of the non-cyclic standard Gray

code. The sequences S′
n and Sn are sometimes referred to as the incomplete

and the complete transition sequence of Gst(n). The number of times the
integer i occurs in the transition sequence of an n-bit Gray code is called
the transition count of the integer i and will be denoted by TCn(i). With
respect to the list of codewords, TCn(i) refers to the number of times that
bit i changes, from 0 to 1 or from 1 to 0, in the column i. If G(n) is a cyclic
code, then it will be clear that TCn(i) is even for every i ∈ [n], and moreover

that
n∑

i=1
TCn(i) = 2n. The standard Gray code Gst(n) of length n has the

following transition counts

TCn(i) =

{
2n−i, if 1 6 i 6 n − 1,
2, if i = n.

(3)

The list of transition counts (TCn(1), TCn(2), . . . , TCn(n)) corresponding
to some Gray code G(n) will be called its transition count spectrum. In some
applications (cf. [3–6], [9]), it appears that the more uniform the distribution
of the transition counts over the integers in the set [n], i.e., the smaller the
differences between the various numbers TCn(i), 1 6 i 6 n, the better the
code will be. An n-bit Gray code with transition counts satisfying |TCn(i)−
TCn(j)| 6 2 for every i > 1 and j 6 n is called balanced, and it is called

totally balanced if TCn(i) = TCn(j) for all i and j. Since
n∑

i=1
TCn(i) = 2n,

a necessary condition for a Gray code to be totally balanced is that n is
equal to a power of 2. So, the standard Gray codes of length 1, 2, and 3 are
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balanced codes and, moreover, those of length 1 and 2 are totally balanced
codes. However for n > 4 the standard Gray code Gst(n) is not balanced.

In [6] Robinson and Cohn introduced an interesting method for the
construction of balanced Gray codes of length n based on a known (n−2)-bit
balanced Gray code. Robinson and Cohn claimed, without giving a complete
proof, that by applying their technique balanced Gray codes can be produced
for any n > 1. Their approach requires a special subsequence of the transition
sequence of the (n − 2)-bit Gray code. In [1] Bhat and Savage present a
method to construct such a subsequence, thus completing the proof for the
existence and the construction of balanced Gray codes for all values of n > 1.
In Section 3 we introduce a different and slightly more general method for
the construction of subsequences as mentioned above. This method appears
to be simpler than the one in [1]. At the end of Section 3 we prove that if
n is a 2-power, a balanced Gray code is always totally balanced. In Section
4 we apply our method to the construction of Gray codes with a special
transition count spectrum, the existence of which was conjectured by Wagner
and West in [10]. Gray codes having such a transition count spectrum can
be considered as generalizations of totally balanced Gray codes in the sense
that all transition count numbers are 2-powers with exponents as close as
possible. More precisely, these exponents are either equal or differ from each
other by 1. For this reason one could call such a Gray code an exponentially

balanced Gray code.

2. The Robinson-Cohn construction
The construction of Robinson and Cohn [6] for obtaining cyclic Gray

codes is an extension of the ultra-composite method introduced by Gilbert
in [2]. Their approach is based on the well-known fact that a Gray code of
length n corresponds to a Hamiltonian cycle in an n-cube. To obtain such
a cycle, they combine Hamiltonian cycles in four copies of the (n − 2)-cube.
The four subcubes are labeled by 00, 01, 11 and 10 (cf. Fig.1) which refer
to the two leftmost bits in the codewords of length n. The outlines of the
construction are as follows (cf. also [1, Section 2]).

Construction A

1. Let

Sn−2 := s1, s2, . . . , s2n−2 (4)

be the transition sequence of some Gray code of length n− 2. Select a
subsequence

T := t1, t2, . . . , tl−1, tl (5)
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of Sn−2 with l even such that t1 and t2, as well as tl−1 and tl are
consecutive in Sn−2.

2. After having inserted four copies of the transition sequence Sn−2 in the
n-cube, one proceeds by deleting a number of ti-numbers according to
the rules:

• from the subcube 00, all odd-indexed elements t1, t3, . . . , tl−1 of T
are deleted;

• from the subcube 01 the elements t2, t3, . . . , tl are deleted;

• from the subcube 11, all even-indexed elements t2, t4, . . . , tl are
deleted;

• from the subcube 10, only t1 is deleted.

3. The four subcubes are connected as is illustrated in Fig.1.

We remark here that Fig. 1 is a slightly altered version of Fig. 7 in [6].

The dots in this figure are vertices in the n-cube, and hence they represent
codewords of length n, and the elements ta label those edges of the cube which
correspond to a transition from one codeword to the next codeword in the
relevant subcube. From this picture it will be evident that the resulting path
is a Hamiltonian cycle, since it is closed and all vertices of the n-cube are
incident with this path precisely once. The resulting transition sequence Sn

of the Gray code is obtained by following the path. This sequence Sn can, in
a schematic way, be written as

Sn = T ′R, T ′′, (6)

where T ′ and T ′′ are modified sequences T . The modifications consist of
inserting a certain subsequence if there is a "gap"in T, i.e., if ti = sj, ti+1 =
sj+k with 2 6 i 6 l−2, k > 2, where sj and sj+k are elements of the sequence
Sn−2 in (4). The treatment of such a gap is handled as sketched in Fig. 2.
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Fig. 1. Gray code construction

Example 1. We take the transition sequence of the standard Gray code
Gst(3) of length 3: S3 = 1, 2, 1, 3, 1, 2, 1, 3.

Furthermore, we take l = 6 and define a subsequence T consisting of the
underlined elements of S3. As one can see the elements t3, t4 and t4, t5 are
not consecutive in S3. Following the path sketched in Fig. 1 and in Fig. 2,
we obtain the following transition sequence of a 5-bit Gray code:

3, 4, 5, 1, 2, 5, 2, 4, 2, 1, 3, 4, 3, 5, 3, 1, 5, 4, 2, 4, 1, 5, 1, 4, 2, 1, 3, 1, 2, 1, 3, 5.

This code is a balanced Gray code, since its transition counts are
TC5(1) = 8 and TC5(2) = TC5(3) = TC5(4) = TC5(5) = 6. Of course,
when starting from some transition sequence Sn−2, the resulting Gray code
will depend on the selected subsequence T = t1, t2, . . . , tl. Let TCn(i) denote
the transition count of position i in the constructed Gray code of length n,
and let TCn−2(i) be its counterpart in the original Gray code of length n−2
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for 1 6 i 6 n−2. From the construction rules and from the picture in Fig. 1, it
follows that if a position i occurs b(i) times in T , there are 2b(i) transitions for
that particular position which will be deleted when constructing Sn. Hence,
the number of times that i occurs in Sn is equal to

TCn(i) = 4TCn−2(i) − 2b(i) (7)

for 1 6 i 6 n−2. Furthermore, it will be obvious, again from the construction
rules and from Fig. 1, that

TCn(n − 1) = TCn(n) = l. (8)

Fig. 2. Gap in detail

Robinson and Cohn in [6] claimed without proof, that T can always be
chosen such that if the original Gray code of length n − 2 is balanced, the
produced Gray code of length n is balanced too. Bhat and Savage in [1] proved
the existence of such a subsequence T for all n > 3. Actually, they showed
in an inductive way that if Sn−2 is balanced, it always has a subsequence T
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with occurrence numbers b(i), 1 6 i 6 n − 2, such that the right hand sides
of equations (7) and (8) are equal to an or to an + 2, where an is defined as
the unique even integer satisfying

an 6
2n

n
< an + 2. (9)

The following theorem holds.

Theorem 1 [Robinson, Cohn, Bhat, Savage]. For all n > 1, there exists
an n-bit balanced Gray code, and if n is a power of 2, there exists an n-bit
totally balanced Gray code.

In [8], along similar lines, a more straightforward proof is given for the
existence of a subsequence T with appropriate numbers b(i).

We remark that a totally balanced Gray code of length n = 2v has
transition count spectrum (2n−v, . . . , 2n−v).

In the next section we shall present a completely different proof of a
slightly more general theorem. It appears to be possible to weaken the required
conditions for the Robinson–Cohn construction, i.e., one can drop the condition
that the last two transition numbers tl−1 and tl of T should be consecutive.

3. An extended Robinson-Cohn construction

We consider the transition sequence Sn−2 of some Gray code G(n − 2).
If u and v are subsequences of Sn−2, the concatenation of u and v will be
denoted by uv. For every subsequence u of Sn−2 we define

u(n − 1, n) = u, n − 1, uR, n, u (10)

and

u(n, n − 1) = u, n, uR, n − 1, u, (11)

where uR stands for the reversed sequence of u. We emphasize that u may be
the empty sequence. Next, we present the construction of a Gray code G(n)
based on the transition sequence of a Gray code G(n − 2).

Construction B

1. Let l be an even positive integer. Partition Sn−2 as

Sn−2 = si1 , u0, si2 , u1, si3 , u2, . . . , sil−1
, ul−2, sil , v,

where i1 = 1, i2 = 2, u0 = ∅ (the empty sequence) and u1, u2 . . . , ul−2, v
are proper subsequences of Sn−2 which may be empty.
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2. Replace u0, u1, u2, . . . , ul−2 by n − 1, u1(n − 1, n), u2(n, n − 1), . . .,
ul−2(n, n − 1) respectively yielding the sequence U .

3. Let V = vR, n, v and W = n − 1, Sn−2, n.

4. Interchange n − 1 and s1 in W , giving the sequence W ′.

5. Define Sn := UR, V,W ′.

For the sake of convenience we shall write S instead of Sn in the next.

Theorem 2. The sequence S := UR, V,W ′ is the transition sequence of
a Gray code G(n).

Proof.We remark that the occurrences of the integers n and n− 1 in the
sequence S alternate according to the following pattern

n − 1, n, n, n − 1, n − 1, n, n, . . . , n − 1, n − 1, n, n, n − 1, n − 1, n, n − 1, n.

It is obvious that all integers in S occur an even number of times. Below
we shall show that any proper subsequence X of S contains at least one
integer which occurs an odd number of times. For the sake of convenience
we say that X satisfies property P . According to a well-known criterion, the
sequence S is the complete transition sequence of a Gray code if and only if
property P holds for any proper subsequence of S which consists of a number
(> 0) of consecutive elements. A proper subsequence X of S has length less
than the length of S, and all its consecutive elements are also consecutive in S.
More in particular, if Z := {i ∈ [n]|i occurs an odd number of times in X},
then we shall say that X satisfies P (Z). The proof of Theorem will be
accomplished by considering a number of distinct cases.

Case 1. X ⊆ UR. If X = UR, then X satisfies P ({n− 1}). This property
is the implication of l being an even integer. Whenever X 6= UR and the
integers n−1 and n occur an even number of times in X ′, then, with respect
to the occurrence of integers an odd number of times, X is equivalent with
a proper subsequence of Sn−2. Thus, X satisfies P .

Case 2. X ⊆ V . Here it is obvious that X satisfies property P , since if X
does not satisfy P ({n}), then X is a proper subsequence of Sn−2.

Case 3. X ⊆ W ′. Because of rule 4 and the properties of Sn−2, it is clear
that X satisfies P .

Case 4. X = X1,X2,X3 with X1 = X ∩UR, X2 = X ∩V , X3 = X ∩W ′,
and X1 6= ∅ or X3 6= ∅. We consider three subcases.

• Let X3 = ∅, and hence X = X1,X2. If UR ⊆ X or V ⊆ X ′, then X
satisfies at least P ({n}) or P ({n−1}). Assume that UR and V are not
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subsequences of X ′. If X does not contain any of the integers n and
n − 1 an odd number of times, then the sequence X ′, with respect to
the occurrence of integers an odd number of times, is equivalent to a
proper subsequence of Sn−2. So, X satisfies P.

• Let X1 = ∅. If X does not satisfy both P ({n}) and P ({n − 1}), then
X must be some proper subsequence vs1 of Sn−2. Here we use the
assumption that Sn−2 is the transition sequence of a cyclic Gray code.
So, again X satisfies P .

• Let X1 6= ∅ and X3 6= ∅. It means that X2 = V = vR, n, v. If X3 = s1,
it will be clear that X satisfies P ({n}) or P ({n − 1}) or contains a
subsequence which is — with respect to the occurrence of integers an
odd number of times — equivalent to a proper subsequence of Sn−2.
Thus X satisfies property P . If X3 contains the integer n− 1 but does
not contain n, the pattern of the occurrence of the integers n−1 and n,
as remarked at the beginning of this proof, will imply that X at least
satisfies P ({n}) or P ({n − 1}). If X3 contains n, or equivalently X3 =
W ′, then since X1 6= UR (remember that X is a proper subsequence of
S), X will satisfy P ({n}) or P ({n−1}) or contain a subsequence which
is, with respect to the occurrence of integers an odd number of times,
equivalent to a proper subsequence of Sn−2. Thus X satisfies property
P . Theorem 3 is proved.

Remark that the subsequence si1, si2 , si3 , . . . , sil in Construction B is here
considered to be a subsequence of Sn−2 although not every pair of elements
sj, sj+1 need to be consecutive in Sn−2. If the subsequence ul−2 of Sn−2 in
rule 1 is empty, we have a subsequence T as mentioned in Construction
A and our construction is equivalent to Construction A (the Robinson–
Cohn construction) with tj = sij , 1 6 j 6 l. In this sense our construction
is a generalization of the Robinson–Cohn construction. From now on, the
subsequence si1, si2 , si3 , . . . , sil , is also referred to as subsequence T .

Since the resulting sequence Sn is a complete transition sequence, all
transition counts are even positive integers, and at least two transition counts
are equal to l, i.e., TCn(n−1) and TCn(n). Of course, the subsequence T can
be produced if and only if 0 6 b(i) 6 TCn−2(i) or, applying (7), whenever
2TCn−2(i) 6 TCn(i) 6 4TCn−2(i) for all i, 1 6 i 6 n − 2.

Example 2. If we start with a 3-bit Gray code with transition counts (2,
2, 4) and with transition sequence S3 = 3, 2, 3, 1, 3, 2, 3, 1, then our method
can not be used to construct a 5-bit Gray code with transition counts (2,
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2, 2, 10, 16), since 10 > 4.2. Neither can we construct a Gray code with
transition counts (2, 4, 6, 8, 12), since all these values are different. However,
we can construct a 5-bit Gray code with transition counts (4, 4, 8, 8, 8) by
taking the subsequence T equal to S3 itself. The resulting 5-bit Gray code
has transition sequence
S5 = 1, 4, 5, 3, 5, 4, 2, 4, 5, 3, 5, 4, 1, 4, 5, 3, 5, 4, 2, 4, 3, 5, 3, 4, 2, 3, 1, 3, 2, 3, 1, 5.

In order to formulate our next theorem, we shall denote the partition of
a positive integer N into n positive even integers in non-decreasing order by
En(N) = (p1, p2, ..., pn), i.e., pi 6 pi+1, 1 6 i 6 n − 1.

Theorem 3. Let G(n − 2) be an (n − 2)-bit Gray code with transition
counts TCn−2(i), 1 6 i 6 n − 2, which are ordered in non-decreasing order,
and let En(2n) = (p1, p2, . . . , pn) be a partition of 2n into n positive integers.
Then the extended Robinson-Cohn construction yields an n-bit Gray code
with transition count spectrum (p1, p2, . . . , pn) if and only if

(i) pk = pk+1 for some k, 1 6 k 6 n − 1;
(ii) 2TCn−2(i) 6 pi 6 4TCn−2(i) for every i, 1 6 i < k;

2TCn−2(i) 6 pi+2 6 4TCn−2(i) for every i, k 6 i 6 n − 2;
(iii) there exist at least two bit positions, j, j′ ∈ [n]\{k, k + 1}, such that

pj < 4TCn−2(i) and p′j < 4TCn−2(i
′), for some i and i′, 1 6 i, i′ 6 n−2, and

such that i and i′ are consecutive integers in the transition sequence Sn−2 of
G(n − 2).

Proof. Let G(n) be the n-bit Gray code constructed by the extended
Robinson–Cohn construction with transition counts pj, 1 6 j 6 n. According
to the construction rules, it is obvious that G(n) has at least two transition
counts which are equal to l, the length of sequence T . More precisely, TCn(n−
1) and TCn(n) are indeed equal to l, and so condition (i) holds for k = n−1.
Condition (ii) is obvious because of (7). Since s1, s2 in the subsequence T
are consecutive, by setting i = s1 and i′ = s2, we must have at least two bit
positions, say j and j′ with j, j′ ∈ [n]\{k, k + 1}, satisfying pj < 4TCn−2(i)
and pj′ < 4TCn−2(i

′), and hence condition (iii) holds. So, the only-if-part of
Theorem is true. To prove the if-part, we define

b(i) =







4TCn−2(i) − pi

2
, 1 6 i < k,

4TCn−2(i) − pi+2

2
, k 6 i 6 n − 2,

(12)

where the numbers pi are the integers from a given partition En(2n). We have

that pk :=
n−2∑

i=1
b(i) > 1, since there exist at least two bit positions, j and j′
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with j, j′ ∈ [n]\{k, k + 1}, such that pj < 4TCn−2(i) and pj′ < 4TCn−2(i
′)

for some i and i′, 1 6 i, i′ 6 n − 2. Moreover, since i and i′ are consecutive,
the subsequence T of length pk can be chosen such that s1 = i and s2 = i′

are consecutive. Following our construction, the resulting Gray code G(n)
will have transition counts pj, 1 6 j 6 n. Theorem 3 is proved.

Example 3. Starting with the standard Gray code Gst(3) with transition
sequence 1, 2, 1, 3, 1, 2, 1, 3 and transition count spectrum (2, 2, 4), we are
able to produce a 5-bit Gray code with transition count spectrum (4, 4, 8, 8,
8). As subsequence T we choose the complete transition sequence of Gst(3).
The resulting Gray code has transition sequence

3, 4, 5, 1, 5, 4, 2, 4, 5, 1, 5, 4, 3, 4, 5, 1, 5, 4, 2, 4, 1, 5, 1, 4, 2, 1, 3, 1, 2, 1, 3, 5.

We remark that, starting from Gst(3), we can construct Gray codes with
the following transition count spectra:

(2, 2, 6, 8, 14), (4, 4, 6, 6, 12), (4, 4, 8, 8, 8),

(4, 4, 4, 6, 14), (4, 4, 6, 8, 10), (4, 6, 6, 8, 8),

(4, 4, 4, 8, 12), (4, 6, 6, 6, 10), (6, 6, 6, 6, 8).

Notice that for instance a Gray code with transition count spectrum (2, 2,
8, 8, 12) cannot be produced by Construction B because requirement (iii) of
Theorem 3 cannot be satisfied. We remark that the requirement that s1 and
s2 must be consecutive elements in Sn−2 (cf. rule 1 Construction B) cannot
be dropped, as the following example shall illustrate.

Example 4 . We start with Gst(3) which has transition sequence
S3 = 1, 2, 1, 3, 1, 2, 1, 3. Take the subsequence T of Construction B consisting
of the integers which are underlined. Notice that there are no consecutive
integers in T which are consecutive in S3. Here u0 = 2, and hence if we
replace u0 by u0(4) = 2, 4, 2, and apply Construction B, we find that S5 is
equal to the sequence

3, 1, 2, 4, 2, 5, 2, 1, 3, 5, 3, 4, 3, 1, 2, 4, 2, 1, 3, 5, 3, 1, 4, 2, 1, 3, 1, 2, 1, 3, 5,

which is not a transition sequence of a Gray code of length 5 because the
proper subsequence 3, 4, 3, 1, 2, 4, 2, 1 (= s11, s12, . . . , s18) contains no
integer occurring an odd number of times.

At the end of this section we also prove the following result.
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Theorem 4. Let G(n) be a balanced Gray code. Then G(n) is totally
balanced if and only if n is a power of 2.

Proof. If G(n) is a totally balanced Gray code, then for every bit position
i, 1 6 i 6 n, TCn(i) = 2n/n. Because TCn(i) is an integer for every i,
the number n must be a power of 2. Conversely, let (p1, p2, . . . , pn) be the
transition count spectrum of G(n). Remark that pi is even for all i, 1 6 i 6 n,
and moreover that |pj −pi| 6 2, 1 6 i, j 6 n. Let i be some fixed index value.
Suppose that there are l transition counts pj such that pj − pi = 2 with
1 6 l < n = 2k. By summation over all j-values, 1 6 j 6 n, we obtain

npi +2l = 2n, and hence l = 2n−1 − n

2
pi = 2n−1 − 2k−1pi = 2k−1(2n−k − pi).

Since 1 6 l < 2k, we obtain 1 6 2k−1(2n−k −pi) < 2k or
1

2k−1
6 2n−k−pi <

2. The number 2n−k − pi must be an integer, and hence 2n−k − pi = 1. It
implies that pi = 2n−k − 1 is an odd integer. This violates the fact that pi is
even. Hence, we may conclude that pi = pj for all i and j. So, G(n) is totally
balanced. Theorem 4 is proved.

4. Gray codes with a special transition count spectrum
Let n = 2v + u, 0 6 u < 2v. The existence of Gray codes with transition

counts

TCn(i) =

{
2n−v−1, if 1 6 i 6 2u,
2n−v, if 2u < i 6 n

(13)

was conjectured in [10]. Let Q be a subset of [n] with cardinality 2u. Then
condition (13) is equivalent with

TCn(i) =

{
2n−v−1, if i ∈ Q,
2n−v, if i ∈ [n]\Q.

(14)

A Gray code satisfying (14) will be called an exponentially balanced Gray
code. By applying the extended Robinson–Cohn construction, we can show
that for every n > 1, a Gray code with transition counts as defined in (14)
exists.

Example 5. The standard Gray codes of length 1, 2, 3 have transition
count spectra satisfying (14). A totally balanced Gray code of length 4 has
also a transition count spectrum satisfying (14). Gray codes G(5) and G(7)
having the following transition sequences S5 and S7 correspond to Gray codes
with transition count spectra satisfying (14):

S5 := 3, 4, 5, 1, 5, 4, 2, 4, 5, 1, 5, 4, 3, 4, 5, 1, 5, 4, 2, 4, 1, 5, 1, 4, 2, 1, 3, 1,

2, 1, 3, 5,
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S7 := 3, 5, 3, 1, 2, 1, 3, 1, 2, 6, 2, 1, 3, 1, 2, 1, 3, 7, 3, 1, 2, 1, 3, 1, 2, 4, 1, 7,
1, 6, 1, 5, 1, 6, 1, 7, 1, 4, 2, 7, 2, 6, 2, 4, 6, 7, 5, 1, 7, 1, 6, 1, 5, 6, 7, 4,
3, 7, 3, 6, 3, 4, 6, 7, 5, 1, 7, 1, 6, 1, 5, 6, 7, 4, 2, 7, 2, 6, 2, 4, 6, 7, 5, 1,
7, 1, 6, 1, 5, 6, 4, 3, 7, 3, 4, 6, 5, 1, 5, 4, 2, 4, 5, 1, 5, 4, 3, 4, 5, 1, 5, 4,
2, 4, 1, 5, 1, 4, 2, 1, 3, 1, 2, 1, 3, 5, 3, 7.

As one can verify, TC5 = (23, 22, 22, 23, 23) and TC7 = (25, 24, 24, 24, 24,
24, 24). So, these Gray codes all are examples of exponentially balanced Gray
codes.

Theorem 5. For every n > 1, there exists an exponentially balanced
Gray code of length n.

Proof. We shall distinguish between the cases n is even and n is odd.
Case I when n is even. We already proved this theorem for the case when n is
a 2-power, as can be seen immediately by comparing (14) with the transition
count spectrum of a totally balanced Gray code (cf. Theorem 1). The proof
for all other cases will be accomplished by (incomplete) induction from one
2-power to the next one. More precisely, starting from a totally balanced
Gray code of length 2v , we shall construct, by applying Construction B, a
series of 2v−1 Gray codes all of which have a transition count spectrum of
type (14).

Let v > 1. If n = 2v +u, u < 2v, is even, then u is even, and we can write
n = n0 + 2m − 2 with n0 = 2v and 1 6 m 6 2v−1. We proceed by induction
to m from m = 1 until m = 2v−1. From Theorem 1, we know that there
exists a totally balanced Gray code G(n0) with transition count spectrum

TCn0 = (2n0−v, 2n0−v, . . . , 2n0−v). (15)

Hence, Theorem is true for m = 1. Assume that there exists a Gray code
G(n) for n = n0+2m−2, where m is some fixed value with 1 6 m 6 2v−1−1,
and with transition count spectrum

TCn = (2n0+2m−2−v−1, . . . , 2n0+2m−2−v−1

︸ ︷︷ ︸

4(m−1)

,

2n0+2m−2−v, . . . , 2n0+2m−2−v

︸ ︷︷ ︸

n0−2m+2

). (16)

We shall assume that this code G(n) with transition sequence Sn has
been produced by applying Construction B m−1 times starting from G(n0).
We shall prove now that we can construct, starting from G(n), a Gray code
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G(n + 2) with transition count spectrum

En+2(2
n+2) = (p1, . . . , p4m, p4m+1, . . . , pn+2)

= (2n0+2m−v−1, . . . , 2n0+2m−v−1

︸ ︷︷ ︸

4m

, 2n0+2m−v, . . . , 2n0+2m−v

︸ ︷︷ ︸

n0−2m

). (17)

In order to satisfy condition (i) of Theorem 3 we take k = n + 1, implying
pk = pk+1 = 2n0+2m−v . One can easily verify that for all i ∈ [n + 2]\{k, k +
1} condition (ii) holds as well. From the above choice for k + 1 it follows
that the length of the subsequence T of Sn must be equal to 2n0+2m−v =
4.2n0+2m−2−v = 4TCn(i), i > 4(m − 1). So, if T contains precisely four
different integers i1, i2, i3, i4 ∈ {4m−3, 4m−2, . . . , n}, and if all these integers
occur in T as often as they do in Sn, i.e., TCn(ij) = 2n0+2m−2−v times, the
required length of T is obtained. The only thing we have to prove yet is that
condition (iii) of Theorem 3 can be satisfied. To be able to do this, we first
show that the number of consecutive pairs {n0 + 2m − 3, n0 + 2m − 2} in
Sn0+2m−2(= Sn) is at least 2v−1 − 1 − (m − 1) = 2v−1 − m. One can see
this as follows. For m = 1, we consider consecutive pairs {l, n} in Sn for
n = n0. Since each l < n occurs 2n−v times, we have that there is certainly
some l < n such that there are at least 2n−v

n−1 occurrences of consecutive pairs
{l, n}. Without loss of generality we may take l = n− 1, since the transition
count spectrum of G(n0) is invariant for bit permutations. Since

2n−v

n − 1
=

2n−v

2v − 1
>

22v−v

2v
= 22v−2v > 2v−1 − 1 for v > 1, (18)

the inequality holds for m = 1. In order to proceed for m > 1, we notice that,
due to rule 2 of Construction B, any consecutive pair {N −1, N} in SN gives
rise to a consecutive pair {N +1, N +2} in SN+2, apart from the consecutive
pair {s1, s2}. Since we applied Construction B m− 1 times to obtain (16), it
follows that there are at least 2v−1−m > 0 pairs {n0+2m−3, n0+2m−2} in
Sn0+2m−2. So, we can take a pair {i, i′} = {n0+2m−3, n0+2m−2}, providing
us with pj < 4TCn(i) and pj′ < 4TCn(i′), for any pair of indices j and j′

taken from [4m]. Since the standard Gray code of length 2 has transition
count spectrum satisfying (14), we may conclude now that Theorem is proved
for the case n is even.

Case II when n is odd. In this case, we shall start with a Gray code of
length 2v +2v −1 for some v > 1 having transition count spectrum (14). The
Gray codes Gst(3) and G(7) in Example 5 are of this type. Starting from a
Gray code of length n0 = 2v + 2v − 1, v > 1, we now construct a series of 2v

Gray codes of length n0 + 2m, 1 6 m 6 2v with transition count spectrum
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(14). Suppose that a Gray code of length n0 = 2v + 2v − 1 with transition
count spectrum satisfying (14) exits for some fixed v > 1. The transition
count spectrum of this Gray code is

(2n0−v−1, . . . , 2n0−v−1

︸ ︷︷ ︸

n0−1

, 2n0−v). (19)

The standard Gray code Gst(3) has this type of spectrum with v = 1.
Based on this Gray code G(n0), using Construction B, we shall construct a
series of 2v Gray codes of length n0 + 2m, 1 6 m 6 2v, all of which have
a transition count spectrum of type (14). In order to do this, we first shall
construct a Gray code with code length n1 = n0 + 2 = 2v+1 + 1 having a
transition count spectrum

(2n0−v, 2n0−v, 2n0−v−1, . . . , 2n0−v−1

︸ ︷︷ ︸

n0

), (20)

which clearly is of type (14). From the assumed spectrum of G(n0) in (19)
we know that TCn0(n0) = 2n0−v. Since every l < n0 has transition count
2n0−v−1, it follows, just like in Case I, that there exists an l < n0 such that
the number of occurrences of the consecutive pair {l, n0} in Sn0 is at least
2n0−v

n0 − 1
. Again we may take without loss of generality l = n0 − 1. Now we

have that the number of consecutive pairs {n0 − 1, n0} is equal to

2n0−v

n0 − 1
=

22v+1−1−v

2v+1 − 2
>

22v+1−v

2v+2
= 22v+1−2v−2 > 2v, v > 2. (21)

Consider

En0+2(2
n0+2) = (p1, . . . , pn) = (2n0−v, 2n0−v, 2n0−v+1, . . . , 2n0−v+1

︸ ︷︷ ︸

n0

). (22)

Take k = n1 − 1 = n0 + 1. Hence, we have pk = pk+1 = 2n0−v+1

which satisfies condition (i) of Theorem 3. Condition (ii) of that theorem
can again be verified easily. For establishing condition (iii) of Theorem 3, we
take {j, j′} = {1, 2}. Since v > 2, it is clear that {j, j′} ⊆ [n0]\{k, k + 1}. It
follows that for every i ∈ [n0] we have pj = pj′ = 2n0−v < 4TCn0(i). Since
all three conditions of Theorem 3 are satisfied, the existence of a Gray code
of length n1 = n0 + 2 with transition count spectrum (22) is guaranteed.
We remark here that the number of occurrences of consecutive pairs of the
integers n1 − 1 and n1 is at least 2v − 1, due to rule 2 of Construction B.
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Based on this last Gray code, we shall derive a series of 2v Gray codes all
of which have a transition count spectrum of type (14). To this end, we
shall apply again (incomplete) induction to m, 1 6 m 6 2v, v > 2, starting
from a Gray code of length n1 = n0 + 2 = 2v+1 + 1 until a code of length
n0 + 2v+1 = 2v+1 + 2v+1 − 1. Since we constructed a Gray code of length n1

having transition count spectrum (14), the theorem is true for m = 1. We
discuss two subcases: 1 6 m 6 2v − 1 and m = 2v.

Subcase II.a. 1 6 m 6 2v − 1, v > 2. Assume that Gray codes G(n) of
length n = n1 + 2m − 2, 1 6 m 6 2v − 2, with transition count spectrum

TCn = (2n1+2m−v−4, . . . , 2n1+2m−v−4

︸ ︷︷ ︸

2(2m−1)

, 2n1+2m−v−3, . . . , 2n1+2m−v−3

︸ ︷︷ ︸

n1−2m

(23)

have been constructed by applying Construction B m−1 times, starting from
G(n1). We shall show now that we can construct, starting from G(n), a Gray
code G(n + 2) with transition count spectrum

En+2(2
n+2) = (p1, . . . , p4m+2, p4m+3, . . . , pn+2)

= (2n1+2m−v−2, . . . , 2n1+2m−v−2

︸ ︷︷ ︸

2(2m+1)

, 2n1+2m−v−1, . . . , 2n1+2m−v−1

︸ ︷︷ ︸

n1−2m−2

). (24)

To satisfy condition (i) of Theorem 3, we take k = n + 1, implying pk =
pk+1 = 2n1+2m−v−1. One can easily verify that condition (ii) holds for every
i ∈ [n + 2]\{k, k + 1}. To prove condition (iii) of Theorem 3, we first show
that the number of consecutive pairs {n− 1, n} in Sn is at least 2v −m. We
can prove this in the same way as we did for a similar statement in case I.
Thus, we can take a pair {i, i′} = {n− 1, n} providing us with pj < 4TCn(i)
and pj′ < 4TCn(i′) for any pair of indices j and j′ taken from [4m + 2].
Notice that for m = 2v − 1 consecutive pairs {n1 + 2m − 1, n1 + 2m} in
Sn1+2m occur at least 2v − 1 − (2v − 1 − 1) = 1 time. Let us define for
m = 2v − 1, n2 = n1 + 2m − 2 = 2v+1 + 2v+1 − 3. Then we have that the
resulting Gray code has a transition count spectrum

(2n1+2m−v−2, . . . , 2n1+2m−v−2

︸ ︷︷ ︸

2(2m+1)

, 2n1+2m−v−1, . . . , 2n1+2m−v−1

︸ ︷︷ ︸

n1−2m−2

) =

(2n2−v−2, . . . , 2n2−v−2

︸ ︷︷ ︸

n2−3

, 2n2−v−1, . . . , 2n2−v−1

︸ ︷︷ ︸

3

) (25)

Subcase II.b. m = 2v. We know that in the transition sequence Sn2 of
the code with transition count spectrum (25) there occurs at least one pair
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of consecutive integers {n2 − 1, n2}. Assume that we want to construct a
Gray code of length n2 +2 = 2v+1 +2v+1 −1 with transition count spectrum
prescribed by

En2+2(2
n2+2) = (p1, . . . , pn2+2) = (2n2−v, . . . , 2n2−v

︸ ︷︷ ︸

n2+1

, 2n2−v+1).

Again we want to establish conditions (i), (ii), and (iii) of Theorem 3. To
satisfy condition (i) we take k = n2 which gives pk = pk+1 = pn2+1 = 2n2−v.
For these values of k and k + 1, condition (ii) holds, as can be verified easily.
For validating condition (iii), take {j, j′} ⊆ [n2 + 1]\{k, k + 1}. By taking
{i, i′} = {n2 − 1, n2}, we can see that pj = pj′ = 2n2−v < 4.2n2−v−1 =
4TCn2(i) = 4TCn2(i

′). Since we know that the integers n2 − 1 and n2 are
consecutive in Sn2 , we conclude that the three conditions of Theorem 3 are
satisfied.

Until here, we showed that a series of 2v − 1 Gray codes exists with
transition count spectra satisfying (14), starting from a similar type of Gray
code of length n1 = n0+2 = 2v+1+1. Remark that the last Gray code derived
in this case (Subcase II.b) has length n2 +2 = 2v+1 +2v+1−1 and, therefore,
it is of the same type as the Gray code of length n0 we started with in Case II.
So, we proved the Theorem for the odd length case for n > 2v + 2v − 1, with
v = 2. Since Gst(1), Gst(3) and G(5) (cf. Example 5) all have a transition
count spectrum of type (14), the Theorem has been proved now for all odd
values of n. Theorem 5 is proved.

Remark. It came to our attention (private communication of Prof.
A.A.Evdokimov, Novosibirsk State University) that some of the results in
this paper and in [1, 6, 10] were already found by Bakos (achieved about
1955), and published, in quite a different context, in A. Ádám, "Truth Function

and the Problem of their Realization by Two-Terminal Graphs Akadémiai

Kiadó, Budapest (1968).
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