УДК 519.1 + 519.8

ПОСТРОЕНИЕ РЕЛАКСАЦИИ ПОЛИТОПА СИММЕТРИЧЕСКОЙ ЗАДАЧИ О КОММИВОЯЖЕРЕ НА ОСНОВЕ СИЛЬНО РАЗРЕШИМОГО СЛУЧАЯ КАЛЬМАНСОНА*)

В. М. Демиденко

На основе условий Кальмансона, гарантирующих достижение минимума функционала симметрической задачи о коммивояжере на цикле заданного вида, построена релаксация ее политопа в аффинном матричном пространстве минимальной размерности, содержащем этот политоп.

Одно из наиболее интересных и важных с теоретической и практической точек зрения направлений в исследовании NP-трудной задачи о коммивояжере связано с изучением ее политопа. Это направление, относящееся к полиэдральной комбинаторике, широко представлено в монографиях [21, 25] и включает исследование отношения смежности, определенного на множестве минимальных граней (вершин) этого политопа, описание его граней максимальной размерности (фасет), построение различных его релаксаций на основе комбинаторных свойств допустимых решений (гамильтоновых циклов) и их различные алгоритмические применения. Конечной целью исследований рассматриваемого политопа в указанных направлениях является его полиэдральное описание в виде системы линейных уравнений и неравенств, т. е. линеаризация задачи коммивояжера. Получение такого описания позволило бы в полном объеме использовать достаточно хорошо развитый аппарат линейного программирования для разработки эффективных методов решения данной задачи. Однако трудности принципиального характера, возникающие на пути линеаризации задачи о коммивояжере, например, NP-полнота распознавания смежности вершин ее политопа [26] и проверки свойств, определяющих отдельные классы его фасет [19], а также сравнительно малое

^{*)}Работа профинансирована Институтом математики НАН Беларуси в рамках Государственной программы фундаментальных исследований "Алгоритм", при частичной поддержке INTAS (проект 00-217).

число комбинаторных свойств гамильтоновых циклов приводят к необходимости расширения базовой основы для построения новых релаксаций задачи и выделения новых классов фасет ее политопа. До настоящего времени, в основном, использовались лишь отдельные свойства гамильтоновых циклов, которые позволили установить, что политопы задач о минимальном 1-дереве [22, 23] и совершенном 2-сочетании [17], задачи о назначениях [18], а также политопы, порождаемые ограничениями устранения подциклов [12] и неравенствами, соответствующими деревьям клик [20], являются приемлемыми с вычислительной точки зрения релаксациями политопа рассматриваемой задачи.

В работах [1, 4, 15] отмечалось, что для построения релаксаций задачи о коммивояжере можно использовать ее специальные случаи, для которых гарантировано достижение оптимума на заранее заданном цикле, так называемые сильно разрешимые случаи [9, 11]. Эти случаи, как правило, определяются избыточными однородными системами линейных неравенств, которые в матричном пространстве задают конусы специального вида, связанные с вершинами политопа задачи о коммивояжере. Описание в явном виде множеств образующих таких конусов позволяет строить различные релаксации исходной задачи. В данной статье на основе сильно разрешимого случая симметрической задачи о коммивояжере, определяемого матрицами Кальмансона [2, 13, 24], построена релаксация ее политопа в минимальном аффинном пространстве, содержащем этот политоп. При построении редаксационного политопа использовалось множество образующих конуса матриц Кальмансона, описание которого в явном виде приведено в [4]. Отметим, что аддитивная характеризация матриц Кальмансона приведена в [16], а обобщение условий Кальмансона на случай несимметрической задачи о коммивояжере приведено в [1, 10].

1. Предварительные сведения, основные понятия и обозначения

Пусть \mathbb{R} — поле вещественных чисел, $\mathbb{R}^{n\times n}$ — пространство вещественных квадратных матриц порядка n, S_n — симметрическая группа подстановок, действующая на множестве $\mathbb{N}_n = \{1,2,\ldots,n\}, T_n$ — множество всех циклов длины n из S_n . Произвольная подстановка σ из S_n трактуется как взаимно однозначное (биективное) отображение множества \mathbb{N}_n в себя, переводящее i из \mathbb{N}_n в $\sigma(i)$. Для обозначения произвольного цикла из T_n в дальнейшем используется запись $\tau=(i_1,i_2,\ldots,i_\ell,i_{\ell+1},\ldots,i_n)$, в которой $i_{\ell+1}=\tau(i_\ell),\,\tau(i_n)=i_1$. С помощью введенных обозначений известная задача о коммивояжере (ЗК) в терминах подстано-

вок формулируется как задача нахождения в T_n такого цикла τ_0 , что $f_A(\tau_0) \leqslant f_A(\tau)$ для произвольного τ из T_n , где $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ и $f_A(\tau) = \sum_{i=1}^n a_{i\tau(i)}$. В случае, когда матрица A принадлежит $\mathbb{R}^{n \times n}_s$ — подпространству симметрических матриц пространства $\mathbb{R}^{n \times n}$ — имеем симметрическую задачу о коммивояжере (C3K).

В 1975 г. К. Кальмансоном [24] были получены условия сильной разрешимости СЗК, гарантирующие достижение минимума функционала $f_A(\tau)$ на цикле $\tau_0 = (1, 2, \ldots, n)$. Эти условия, накладываемые на элементы матрицы $X = [x_{ij}]$ из $\mathbb{R}^{n \times n}_s$, записываются в виде однородной системы линейных неравенств

$$x_{ij} + x_{kl} - x_{ik} - x_{i\ell} \le 0$$
, $x_{i\ell} + x_{jk} - x_{ik} - x_{i\ell} \le 0$, $i < j < k < l \in \mathbb{N}_n$, (1)

которая в $\mathbb{R}^{n\times n}_{\mathrm{S}}$ задает конус K специального вида . В дальнейшем этот конус называется конусом Кальмансона. Согласно [7, с. 155], любой конус, в частности и конус K, представим в виде прямой суммы $K = L + K^{\perp}$, в которой через L обозначено пространство линейности конуса K (максимальное подпространство пространства $\mathbb{R}^{n\times n}_{\mathrm{S}}$, содержащееся в K), а через K^{\perp} — ортогональная проекция конуса K на пространство L^{\perp} — ортогональное дополнение L в $\mathbb{R}^{n\times n}_{\mathrm{S}}$. Таким образом, по определению имеет место равенство $K^{\perp} = K \cap L^{\perp}$.

Введем в рассмотрение бинарные матрицы E_{ij} , где $i, j \in \mathbb{N}_n$, каждая из которых имеет единственный ненулевой элемент, стоящий на пересечении i-й строки и j-го столбца. Далее, для p и $q, 1 \leqslant p < q \leqslant n$, положим $F_{pq} = E_{pq} + E_{qp}$ и определим множество \boldsymbol{B} , состоящее из матриц вида

$$B'_{ijk\ell} = F_{ij} + F_{k\ell} - F_{ik} - F_{j\ell}, \quad B''_{ijk\ell} = F_{i\ell} + F_{jk} - F_{ik} - F_{j\ell},$$
$$i < j < k < \ell \in \mathbb{N}_n. \quad (2)$$

Очевидно, что множество матриц $B \subset \mathbb{R}^{n \times n}_s$ порождает однородную систему линейных неравенств вида slu $B = \{(B, X) \leq 0 \mid B \in B\}$, где $(B, X) = \sum_{i=1}^n \sum_{j=1}^n b_{ij} x_{ij}$ — скалярное произведение матриц $B = [b_{ij}]$ и $X = [x_{ij}]$. Непосредственной проверкой легко убедиться, что в случае симметричности матрицы $X = [x_{ij}]$ система (1) эквивалентна введенной системе неравенств slu B. Далее выделим в B подмножество B_1 , состоящее из матриц $B'_{1i+1i+2n}$ и $B''_{ii+1jj+1}$, где $1 \leq i \leq j-2 \leq n-3$, которые в дальнейшем для упрощения изложения обозначаются соответственно через B_{i+1} и B_{ij} . Подмножество матриц B_1 , очевидно, порождает подсистему системы slu B вида slu $B_1 = \{(B, X) \leq 0 \mid B \in B_1\}$. Эквивалентность системы slu B своей подсистеме slu B_1 , установленная в [2, 13],

позволила полностью описать пространства L, L^{\perp} [2, 16] и указать в явном виде минимальные грани конусов K и K^{\perp} [4]. Сформулируем в виде отдельных утверждений результаты из указанных выше работ, которые понадобятся в дальнейшем.

Лемма 1. Справедливы следующие предложения:

(а) конус Кальмансона \pmb{K} совпадает с множеством решений системы неравенств slu \pmb{B}_1 ;

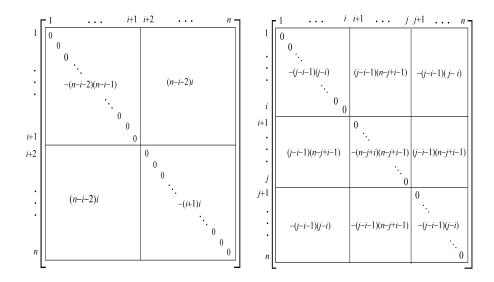
(b) множество матриц
$$E = \left\{ E_{ii}, E_i = \sum_{i \neq j=1}^n (E_{ij} + E_{ji}) \in \mathbb{R}_s^{n \times n} \mid i \in \mathbb{R}_s^n \right\}$$

 $\mathbb{N}_n \Big\}$ образует базис пространства линейности $m{L}$ конуса Кальмансона $m{K}.$

Рассмотрим симметричные матрицы $U_{i+1} = \left[u_{pq}^{(i+1)}\right], \ U_{ij} = \left[u_{pq}^{(ij)}\right], \ 1 \leqslant i \leqslant j-2 \leqslant n-3,$ в которых верхние треугольники определяются соотношениями:

$$u_{pq}^{(i+1)} = \begin{cases} 0, & \text{если } 1 \leqslant p = q \leqslant n, \\ -(n-i-2)(n-i-1), & \text{если } 1 \leqslant p < q \leqslant i+1, \\ (n-i-2)i, & \text{если } 1 \leqslant p \leqslant i+1, & i+2 \leqslant q \leqslant n, \\ -(i+1)i, & \text{если } i+2 \leqslant p < q \leqslant n, \end{cases}$$
(3)
$$u_{pq}^{(ij)} = \begin{cases} 0, & \text{если } 1 \leqslant p = q \leqslant n, \\ -(j-i-1)(j-i), & \text{если } 1 \leqslant p < q \leqslant i, \\ & \text{либо } j+1 \leqslant p < q \leqslant n, \\ -(j-i-1)(j-i), & \text{если } 1 \leqslant p \leqslant i, j+1 \leqslant q \leqslant n, \\ (j-i-1)(n-j+i-1), & \text{если } 1 \leqslant p \leqslant i, \\ & i+1 \leqslant q \leqslant j, \\ (j-i-1)(n-j+i-1), & \text{если } i+1 \leqslant p \leqslant j, \\ & j+1 \leqslant q \leqslant n, \\ -(n-j+i)(n-j+i-1), & \text{если } i+1 \leqslant p < q \leqslant j. \end{cases}$$

Из соотношений (3) и (4) следует, что матрицы $U_{i+1},\ U_{ij},\ 1\leqslant i\leqslant j-2\leqslant n-3$, принадлежат пространству $\mathbb{R}^{n\times n}_s$, имеют клеточную структуру и соответственно состоят из четырех и девяти клеток. Схематичное изображение матриц U_{i+1} и U_{ij} приведено на рис., на котором показано, что матрица U_{i+1} разбивается на клетки (i+1)-й строкой и (i+1)-м столбцом, а матрица $U_{ij}-i$ -й строкой и j-м столбцом; при этом все элементы каждой клетки введенных матриц, исключая диагональные, отличны от нуля и равны между собой. Значения элементов клеток обозначены числами, стоящими в центре прямоугольников, изображающих соответствующие клетки. В дальнейшем введенное множество матриц обозначается через U.



Теорема 1. Матрицы U_{i+1} и U_{ij} из \mathbf{L}^{\perp} , $1 \leqslant i \leqslant j-2 \leqslant n-3$, с точностью до умножения на положительные множители из \mathbb{R} образуют единственную систему направляющих крайних лучей конуса \mathbf{K}^{\perp} (множество образующих конуса), для которой справедливы соотношения

$$(B_{i+1}, U_{i+1}) = -(n-1)(n-2), \quad (B, U_{i+1}) = 0 \quad \text{при } B \neq B_{i+1},$$

 $(B_{ij}, U_{ij}) = -(n-1)(n-2), \quad (B, U_{ij}) = 0 \quad \text{при } B \neq B_{ij},$ (5)

где B — произвольная матрица из B_1 .

Далее понадобятся матрицы подстановок и так называемые перенумерованные матрицы. Определим эти матрицы и перечислим их основные свойства, которые неоднократно будут использоваться при доказательстве вспомогательных и основных утверждений. Под матрицей, соответствующей подстановке σ из S_n , понимается бинарная матрица $\overline{\sigma} = [s_{ij}]$ с ненулевыми элементами $s_{i\sigma(i)}$, где $i \in \mathbb{N}_n$. В дальнейшем такие матрицы будем называть матрицами подстановок. При заданной подстановке σ через $A^{\sigma} = [a'_{ij}]$ обозначается матрица $\overline{\sigma}^{-1}A\overline{\sigma}$, подобная матрице $A = [a_{ij}]$, где $\overline{\sigma}^{-1}$ — матрица, обратная к $\overline{\sigma}$. Простая проверка показывает, что для элементов матрицы A^{σ} выполняются равенства $a'_{ij} = a_{\sigma(i)\sigma(j)}$, $i, j \in \mathbb{N}_n$. Поэтому матрица A^{σ} называется перенумерованной посредством σ матрицей A. Для перенумерованных матриц имеют

место соотношения

$$\left(\sum_{i=1}^{k} \lambda_{i} A_{i}\right)^{\sigma} = \sum_{i=1}^{k} \lambda_{i} A_{i}^{\sigma}, \quad (A_{i}^{\sigma})^{\rho} = A_{i}^{\rho\sigma}, \quad (A_{i}, A_{j}) = (A_{i}^{\sigma}, A_{j}^{\sigma}), \quad (6)$$

где $A_1, \ldots, A_k \in \mathbb{R}^{n \times n}, \lambda_1, \ldots, \lambda_k \in \mathbb{R}$ и $\sigma \rho$ — произведение подстановок σ , и ρ из S_n , которое определяется равенствами $\sigma \rho(i) = \sigma(\rho(i))$, где $i \in \mathbb{N}_n$. Для перенумерованных матриц подстановок и матриц E_{ij} , кроме (6), дополнительно выполняются соотношения

$$\overline{\tau}^{\sigma} = \overline{\tau^{\sigma}}, \overline{\tau}^{-1} = \overline{\tau^{-1}}, \left(\overline{\tau^{-1}}\right)^{\sigma} = (\overline{\tau^{\sigma}})^{-1}, E_{ij}^{\sigma} = E_{\sigma(i)\sigma(j)},$$

$$\tau, \sigma \in S_n, i, j \in \mathbb{N}_n.$$

$$(7)$$

Для любых подмножеств $A \subseteq \mathbb{R}^{n \times n}$ и $S \subseteq S_n$ полагаем

$$\mathbf{A}^{S} = \left\{ A^{\sigma} \in \mathbb{R}^{n \times n} \, | \, A \in \mathbf{A}, \, \, \sigma \in S \right\}.$$

В случае $A^S=A$ множество матриц A называется инвариантным относительно S. Выделим в S_n стабилизатор элемента 1, т. е. группу подстановок $S_n^1=\{\sigma\in S_n\,|\,\sigma(1)=1\}$. Если для произвольного цикла τ из T_n использовать запись $\tau=(1,i_2,\ldots,i_n)$, то согласно $[6,\ c.\ 17]$ $T_n=\{\tau_0^\sigma\,|\,\sigma\in S_n^1\}$, где $\tau_0=(1,2,\ldots,n)$, $\tau_0^\sigma=\sigma\tau\sigma^{-1}$ и σ^{-1} — подстановка, обратная к σ . Введенное представление для T_n позволяет сформулировать ЗК в теоретико-групповой постановке как задачу поиска в группе S_n^1 такой подстановки ρ , что $f_A\left(\tau_0^\rho\right)\leqslant f_A\left(\tau_0^\sigma\right)$ для произвольной σ из S_n^1 при условии $A=[a_{ij}]\in\mathbb{R}^{n\times n}$.

Нетрудно проверить, что для произвольной матрицы A из $\mathbb{R}^{n\times n}_s$ и произвольной подстановки σ из S^1_n выполняется равенство $f_A\left(\tau^\sigma_0\right)=f_A\left(\left(\tau^\sigma_0\right)^{-1}\right)$, из которого, ввиду $\left(\tau^\sigma_0\right)^{-1}\in T_n$, следует, что минимум функционала СЗК всегда достигается на паре различных циклов τ^ρ_0 и $\left(\tau^\rho_0\right)^{-1}$. Для устранения неоднозначности в определении минимума СЗК используется ее матричная постановка. Введем бинарную матрицу $T_0=\overline{\tau_0}+\overline{\tau_0}^{-1}$ и положим $\mathbf{T}=\left\{T^\sigma_0\in\mathbb{R}^{n\times n}_s\mid\sigma\in S^1_n\right\}$. Тогда с учетом введенных соглашений в матричной постановке СЗК формулируется как задача нахождения в \mathbf{T} такой матрицы T^ρ_0 , что $(A,T^\rho_0)\leqslant (A,T^\sigma_0)$ для произвольной матрицы T^σ_0 из \mathbf{T} при условии, что $A\in\mathbb{R}^{n\times n}_s$. Равносильность теоретико-групповой, матричной, а следовательно, и исходной постановок СЗК, вытекает из равенства $(A,T^\sigma_0)=2f_A\left(\tau^\sigma_0\right)$, справедливость которого для произвольных $A\in\mathbb{R}^{n\times n}_s$ и $\sigma\in S^1_n$ доказывается с помощью

соотношений (6) и (7). Для СЗК в матричной постановке естественным образом определяется ее политоп

$$\boldsymbol{P}_{\text{C3K}} = \big\{ X \in \mathbb{R}_s^{n \times n} \, | \, X = \sum_{\sigma \in S_n^1} \lambda_{\sigma} T_0^{\sigma}, \, \sum_{\sigma \in S_n^1} \lambda_{\sigma} = 1, \, 0 \leqslant \lambda_{\sigma} \in \mathbb{R} \big\},$$

представляющий собой линейную выпуклую оболочку множества матриц T. Для обозначения вершин политопа $P_{\rm C3K}$ и его аффинной оболочки (аффинного пространства минимальной размерности, содержащего $P_{\rm C3K}$), используются соответственно стандартные обозначения vert $P_{\rm C3K}$ и aff $P_{\rm C3K}$. При доказательстве утверждений следующего раздела понадобится описание aff $P_{\rm C3K}$, приведенное в [12], [25, с. 259].

Теорема 2. Пространство aff $P_{\rm C3K}$ совпадает с множеством решений системы уравнений

$$\sum_{j=1}^{i-1} x_{ji} + \sum_{j=i+1}^{n} x_{ij} = 2, \ x_{ii} = 0, \ i \in \mathbb{N}_n,$$
 (8)

при этом $\dim(\text{aff } P_{C3K}) = \dim P_{C3K} = n(n-3)/2.$

Наконец, используя матричную постановку СЗК, сформулируем основной результат работы К. Кальмансона [24], который понадобится при доказательстве леммы 6.

Теорема 3. Для любой матрицы C из конуса K и любой подстановки σ из S_n^1 выполняется неравенство $(C, T_0^\sigma) \geqslant (C, T_0)$.

При доказательстве основных утверждений данной статьи понадобятся леммы 2–4, которые приводятся в следующем разделе.

2. Вспомогательные утверждения

В работах [2, 16] показано, что множество матриц B_1 образует базис пространства L^{\perp} . Явный вид разложений матриц вида (2) по базису B_1 устанавливает

Лемма 2. Для матриц $B_{ijk\ell}^{'}$ и $B_{ijk\ell}^{''}$, из множества ${m B}$ выполняются равенства:

$$B_{ijk\ell}^{"} = \sum_{r=i}^{j-1} \sum_{s=k}^{\ell-1} B_{rs}$$
 для всех $1 \leqslant i < j < k < \ell \leqslant n$, (9)

$$B_{ijk\ell}^{'} = B_{1jkn}^{'} + B_{1ijk}^{''} + B_{jk\ell n}^{''}$$
 для всех $1 \leqslant i < j < k < \ell \leqslant n$, (10)

$$B_{1jkn}^{'} = \sum_{r=j}^{k-1} B_r$$
 для всех $2 \leqslant j < k \leqslant n-1$. (11)

Доказательство. Справедливость (9) неоднократно отмечалась в работах [2, 13, 15], [25, с. 100]. Поэтому докажем (10). Подставив в сумму $B_{1jkn}' + B_{1ijk}'' + B_{jk\ell n}''$ вместо слагаемых их выражения из (2) и проведя несложные преобразования, получим $B_{1jkn}' + B_{1ijk}'' + B_{jk\ell n}'' = (F_{1j} + F_{kn} - F_{1k} - F_{jn}) + (F_{1k} + F_{ij} - F_{1j} - F_{ik}) + (F_{jn} + F_{k\ell} - F_{j\ell} - F_{kn}) = F_{ij} + F_{k\ell} - F_{ik} - F_{j\ell} = B_{ijk\ell}'$, что доказывает справедливость (10). Аналогичной подстановкой убеждаемся в справедливости равенств $B_{1pkn}' = B_p + B_{1p+1kn}'$ для всех p, где $j \leq p \leq k-1$. Просуммировав по $p=j, j+1, \ldots, k-1$ полученные равенства и удалив одинаковые слагаемые из левой и правой частей результирующего равенства, получим (11). Лемма 2 доказана.

При доказательстве леммы 7 используются следующие два важных свойства множества матриц T.

Лемма 3. Множество матриц T инвариантно относительно S_n^1 и совпадает c vert P_{C3K} .

Доказательство. Чтобы убедиться в инвариантности T относительно S_n^1 , достаточно установить справедливость равенства $T = T^{S_n^1}$. Как уже отмечалось выше, S_n^1 является группой. Пусть ε — тождественная подстановка. Тогда $T = T^\varepsilon \subseteq T^{S_n^1}$, так как $\varepsilon \in S_n^1$. Далее, произвольная матрица из $T^{S_n^1}$ имеет вид $(T_0^\sigma)^\rho$, где σ , $\rho \in S_n^1$. Отсюда с учетом (6) и $\rho \sigma \in S_n^1$ следует, что $(T_0^\sigma)^\rho = T_0^{\rho \sigma} \in T$. Таким образом $T^{S_n^1} \subseteq T$ и с учетом доказанного обратного включения имеем $T = T^{S_n^1}$.

Равенство $T={\rm vert}\, P_{\rm C3K}$ справедливо, если T является выпукло независимым множеством в $\mathbb{R}^{n\times n}_{\rm s}$. Действительно, в этом случае T является множеством крайних точек политопа $P_{\rm C3K}$, которое согласно [5, с. 19] совпадает с множеством vert $P_{\rm C3K}$. Очевидно, что для доказательства выпуклой независимости T достаточно убедится в конической независимости T. В связи с этим напомним, что произвольное подмножество из $\mathbb{R}^{n\times n}_{\rm s}$, состоящее не менее чем из двух матриц, является конически независимым, если любая матрица из этого множества не выражается в виде линейной комбинации остальных матриц, в которой коэффициенты неотрицательны и не все равны нулю. Предположим, что T — конически зависимо в $\mathbb{R}^{n\times n}_{\rm s}$. Тогда в T должна существовать такая матрица $T^{\rho}_{\rm s}$, что $T^{\rho}_{\rm s} = \sum_{\sigma \in S} \lambda_{\sigma} T^{\sigma}_{\rm s}$, где $0 < \lambda_{\sigma} \in \mathbb{R}$, $S \subseteq S^{1}_{n} \backslash \{ \rho \}$ и $|S| \geqslant 2$. Следовательно,

для произвольной матрицы X из $\mathbb{R}^{n \times n}_{\mathrm{s}}$ должно выполняться равенство

$$(T_0^{\rho}, X) = \left(\sum_{\sigma \in S} \lambda_{\sigma} T_0^{\sigma}, X\right) = \sum_{\sigma \in S} \lambda_{\sigma} (T_0^{\sigma}, X). \tag{12}$$

Так как множество S не пусто и состоит из подстановок, отличных от

 $\rho,$ то в S найдется такая подстановка $\theta,$ что для некоторого i из \mathbb{N}_n будет выполняться неравенство $\tau_0^\rho(i)\neq\tau_0^\theta(i).$ Из полученного соотношения следует, что элемент матрицы $T_0^\rho,$ находящийся на пересечении i-й строки и $\tau_0^\theta(i)$ -го столбца, и симметричный ему элемент равны 0, а соответствующие им элементы матрицы T_0^θ равны 1. Следовательно, для матриц $X_0=E_{i\tau_0^\theta(i)}+E_{\tau_0^\theta(i)i}$ и T_0^ρ справедливы равенства $\left(T_0^\rho,X_0\right)=\left(T_0^\rho,E_{i\tau_0^\theta(i)}\right)+\left(T_0^\rho,E_{\tau_0^\theta(i)i}\right)=0.$ В то же время

$$\left(\sum_{\sigma \in S} \lambda_{\sigma} T_{0}^{\sigma}, X_{0}\right) = \sum_{\sigma \in S \setminus \{\theta\}} \lambda_{\sigma} \left(T_{0}^{\sigma}, X_{0}\right) + \left(T_{0}^{\theta}, E_{i\tau_{0}^{\theta}(i)}\right) + \left(T_{0}^{\theta}, E_{\tau_{0}^{\theta}(i)i}\right) \\
= \sum_{\sigma \in S \setminus \{\theta\}} \lambda_{\sigma} \left(T_{0}^{\sigma}, X_{0}\right) + 2 > 0,$$

так как $\sum_{\sigma \in S \setminus \{\theta\}} \lambda_{\sigma}(T_0^{\sigma}, X_0) \geqslant 0$, ввиду $0 < \lambda_{\sigma} \in \mathbb{R}$ и неотрицательности элементов матриц T_0^{σ} и X_0 . Таким образом, установлено, что для матрицы $X_0 = E_{i\tau_0^{\theta}(i)} + E_{\tau_0^{\theta}(i)i}$ не выполняется равенство (12). Полученное противоречие доказывает коническую, а следовательно и выпуклую независимость множества матриц T. Леммы 2 доказана.

Нижеследующее утверждение показывает, что направляющее векторное пространство аффинной оболочки политопа P_{C3K} совпадает с L^{\perp} .

Лемма 4. Пространство L^{\perp} инвариантно относительно S_n^1 и для произвольной подстановки σ из S_n^1 имеет место равенство aff $\boldsymbol{P}_{\text{СЗК}} = T^{\sigma} + \boldsymbol{L}^{\perp}$.

Доказательство. Убедимся в инвариантности пространства L^{\perp} относительно S_n^1 , т. е. в справедливости равенства $(L^{\perp})^{S_n^1} = L^{\perp}$. Включение $L^{\perp} \subseteq (L^{\perp})^{S_n^1}$ очевидно, поскольку $\varepsilon \in S_n^1$ (напомним, что S_n^1 — группа и ее единичный элемент — тождественная подстановка ε). Докажем справедливость обратного включения $(L^{\perp})^{S_n^1} \subseteq L^{\perp}$. По определению L^{\perp} — ортогональное дополнение в $\mathbb{R}_s^{n \times n}$ пространства линейности L конуса K. Следовательно, в силу предложения (b) леммы 1, пространство L^{\perp} совпадает с множеством решений системы линейных уравнений вида $\mathrm{slg}\,E = \{(E_{ii},Y)=0,\;(E_i,Y)=0,\;|i\in\mathbb{N}_n\}$. Для произвольных подстановки σ из S_n^1 и матрицы E_{ii} из E в силу (7) справедливо равенство $(E_{ii})^{\sigma} = E_{\sigma(i)\sigma(i)}$. Следовательно, $E_{\sigma(i)\sigma(i)} \in E$, поскольку $\sigma(i) \in \mathbb{N}_n$. Далее из (6), (7), биективности подстановок и коммутативности операции сложения матриц для произвольной матрицы E_i из E следует справед-

ливость цепочки равенств

$$E_{i}^{\sigma} = \left(\sum_{i \neq j=1}^{n} (E_{ij} + E_{ji})\right)^{\sigma} = \sum_{i \neq j=1}^{n} (E_{ij} + E_{ji})^{\sigma}$$

$$= \sum_{i \neq j=1}^{n} \left(E_{\sigma(i)\sigma(j)} + E_{\sigma(j)\sigma(i)}\right) = \sum_{\sigma(i) \neq q=\sigma(1)}^{\sigma(n)} \left(E_{\sigma(i)q} + E_{q\sigma(i)}\right)$$

$$= \sum_{\sigma(i) \neq q=1}^{n} \left(E_{\sigma(i)q} + E_{q\sigma(i)}\right) = E_{\sigma(i)},$$

из которой, поскольку $\sigma(i) \in \mathbb{N}_n$, следует $(E_i)^{\sigma} = E_{\sigma(i)} \in E$. Выберем в $(L^{\perp})^{S_n^1}$ произвольную матрицу X. Так как S_n^1 — группа, то можно считать, что $X = Y^{\sigma^{-1}}$, где $Y \in L^{\perp}$ и $\sigma \in S_n^1$. Покажем, что $X = Y^{\sigma^{-1}}$ — решение системы slg E, откуда будет следовать справедливость включения $(L^{\perp})^{S_n^1} \subseteq L^{\perp}$ и, следовательно, инвариантность L^{\perp} относительно S_n^1 . В силу (6) имеем $\left(E_{ii}, Y^{\sigma^{-1}}\right) = \left(E_{ii}^{\sigma}, \left(Y^{\sigma^{-1}}\right)^{\sigma}\right) = \left(E_{ii}^{\sigma}, Y\right) = \left(E_{\sigma(i)\sigma(i)}, Y\right) = 0$ для любого i из \mathbb{N}_n , воскольку $E_{\sigma(i)\sigma(i)} \in E$ и $Y \in L^{\perp}$. Учитывая, что $E_{\sigma(i)} \in E$, по аналогии убеждаемся в справедливости равенств $\left(E_i, Y^{\sigma^{-1}}\right) = \left(E_i^{\sigma}, Y\right) = \left(E_{\sigma(i)}, Y\right) = 0$ для $Y^{\sigma^{-1}}$ и всех i из \mathbb{N}_n . Таким образом установлено, что любая матрица $Y^{\sigma^{-1}}$ из L^{\perp} является решением системы slg E и, следовательно, пространство L^{\perp} является инвариантным относительно группы подстановок S_n^1 .

Теперь убедимся в справедливости равенства aff $P_{\text{СЗК}} = T_0^{\sigma} + \boldsymbol{L}^{\perp}$. Пусть σ — произвольная фиксированная подстановка из S_n^1 , а $X = [x_{ij}]$ — произвольная матрица из $T_0^{\sigma} + \boldsymbol{L}^{\perp}$. Тогда $X = T_0^{\sigma} + Y$, где $Y \in \boldsymbol{L}^{\perp}$, и для матрицы $Y = X - T_0^{\sigma}$ должны выполняться равенства

$$(E_i, X - T_0^{\sigma}) = \sum_{i \neq j=1}^{n} (E_{ij} + E_{ji}, X - T_0^{\sigma}) = 0, (E_{ii}, X - T_0^{\sigma}) = 0, i \in \mathbb{N}_n,$$

которые в силу симметричности матрицы X и $(E_{ii}, T_0^{\sigma}) = 0$ при $i \in \mathbb{N}_n$ равносильны равенствам $2\left(\sum\limits_{j=1}^{i-1}(E_{ji}, X) + \sum\limits_{j=i+1}^{n}(E_{ij}, X)\right) = 4, (E_{ii}, X) = 0$, где $i \in \mathbb{N}_n$. Таким образом, систему линейных уравнений, определяющую в $\mathbb{R}_s^{n \times n}$ аффинное пространство $T_0^{\sigma} + \mathbf{L}^{\perp}$, образуют равенства $\sum\limits_{j=1}^{i-1}(E_{ji}, X) + \sum\limits_{j=i+1}^{n}(E_{ij}, X) = 2$ и $(E_{ii}, X) = 0$, где $i \in \mathbb{N}_n$. В силу

 $(E_{ji}, X) = x_{ji}, (E_{ij}, X) = x_{ij}, (E_{ii}, X) = x_{ii}$, приведенная система уравнений совпадает с системой (8), которая в силу теоремы 2 определяет aff $\mathbf{P}_{\text{СЗК}}$. Таким образом доказано, что aff $\mathbf{P}_{\text{СЗК}}$ и $T_0^{\sigma} + \mathbf{L}^{\perp}$ являются множествами решений одной и той же системы линейных уравнений. Следовательно, aff $\mathbf{P}_{\text{СЗК}} = T_0^{\sigma} + \mathbf{L}^{\perp}$. Лемма 4 доказана.

3. Релаксация политопа Р_{СЗК}

Методы решения NP-трудных задач комбинаторной оптимизации типа ветвей и границ обычно используют релаксации решаемой задачи, которые позволяют эффективно вычислять нижние границы ее оптимума. Под релаксацией, как правило, понимается некоторая другая комбинаторно-оптимизационная задача, в множество допустимых решений которой инъективно вкладывается множество допустимых решений исходной задачи [25], т. е. между указанными множествами устанавливается инъективное соответствие. Политоп релаксационной задачи принято называть релаксационным политопом исходной задачи или просто его релаксацией. В данном разделе, используя свойства симметрии политопа $P_{ ext{C3K}}$, строится его релаксация $P_{ ext{KAL}}$ на основе конуса K^{\perp} . Предлагаемая релаксация помимо основного требования — инъективности вложения множества вершин политопа $P_{
m C3K}$ в множество вершин $P_{
m KAL}$ обладает еще двумя свойствами: $P_{ ext{KAL}}$ принадлежит aff $P_{ ext{C3K}},$ а размерности $P_{
m KAL}$ и $P_{
m C3K}$ совпадают, т. е. для $P_{
m KAL}$ выполняются следующие соотношения:

$$P_{\text{KAL}} \subseteq \text{aff } P_{\text{C3K}}, \quad \dim P_{\text{KAL}} = \dim P_{\text{C3K}}, \quad \text{vert } P_{\text{C3K}} \subseteq \text{vert } P_{\text{KAL}}, \quad (13)$$

где через vert $P_{\rm C3K}$ и vert $P_{\rm KAL}$ обозначены множества вершин соответствующих политопов.

Перейдем к построению релаксации $P_{\text{каl}}$. Пусть $-K^{\perp} = \{-Y \in L^{\perp} Y \in K^{\perp}\}$ — конус, противоположный конусу K^{\perp} . По теореме 1 множество $U = \{U_i, \ U_{ij} \in L^{\perp} \ | \ 1 \leqslant i \leqslant j-2 \leqslant n-3\}$ совпадает с множеством образующих конуса K^{\perp} . Следовательно, $-U = \{-U \in L^{\perp} \ | \ U \in U\}$ является множеством образующих противоположного конуса $-K^{\perp}$. Обозначим через \widetilde{K}^{\perp} поляру конуса $-K^{\perp}$. Согласно [8, с. 161, 162] поляра $\widetilde{K}^{\perp} = \{X \in L^{\perp} \ | \ (Y, X) \leqslant 0, \ Y \in -K^{\perp}\}$ является острым конусом в L^{\perp} , который описывается неизбыточной однородной системой неравенств, порождаемой множеством матриц -U и имеющей вид $\mathrm{slu}\,U = \{(U, X) \geqslant 0 \ | \ U \in U\}$. Рассмотрим сдвиг поляры \widetilde{K}^{\perp} в вершину T_0 политопа P_{C3K} , который согласно [5, с. 13] совпадает с множеством матриц

 $T_0+\widetilde{m{K}}^\perp=\left\{T_0+Y\in\mathbb{R}^{n imes n}_{\mathrm{s}}\,|\,Y\in\widetilde{m{K}}^\perp
ight\}$. Далее, для произвольной подстановки σ из S^1_n определим множество

$$\left(T_{0}+\widetilde{\boldsymbol{K}}^{\perp}\right)^{\sigma}=\left\{T_{0}^{\sigma}+Y^{\sigma}\in\mathbb{R}_{\mathrm{s}}^{n\times n}\,|\,Y\in\widetilde{\boldsymbol{K}}^{\perp}\right\}$$

всех перенумерованных посредством σ матриц из $T_0 + \widetilde{\boldsymbol{K}}^\perp$ и введем в рассмотрение полиэдр $\boldsymbol{P}_{\text{KAL}}$, являющийся пересечением множеств матриц $\left(T_0 + \widetilde{\boldsymbol{K}}^\perp\right)^\sigma$ по всем σ из S_n^1 , т. е. по определению полагаем $\boldsymbol{P}_{\text{KAL}} = \bigcap_{\sigma \in S_n^1} \left(T_0 + \widetilde{\boldsymbol{K}}^\perp\right)^\sigma$.

Основная цель данной работы состоит в доказательстве того, что полиэдр P_{KAL} — релаксация политопа $P_{\text{СЗК}}$, обладающая свойствами (13). Чтобы убедиться в этом, понадобятся еще четыре вспомогательных утверждения.

Лемма 5. Полиэдр P_{KAL} содержится в aff P_{C3K} и совпадает с множеством решений системы

$$\operatorname{slu} oldsymbol{P}_{\mathrm{KAL}} = igcup_{\sigma \in S^1_n} \operatorname{slu} oldsymbol{U}^\sigma, \;\; \mathit{где} \;\; \operatorname{slu} oldsymbol{U}^\sigma = \left\{ (U^\sigma, \, X) \geqslant (U, \, T_{\scriptscriptstyle 0}) \mid U \in oldsymbol{U}
ight\}.$$

Доказательство. В силу леммы 4 должны выполняться равенства aff $P_{\text{СЗК}} = T_0^{\sigma} + L^{\perp}$ и $(L^{\perp})^{\sigma} = L^{\perp}$ для произвольной σ из S_n^1 . Для каждого из перенумерованных сдвигов $\left(T_0 + \widetilde{K}^{\perp}\right)^{\sigma}$, пересечением которых является $P_{\text{КАL}}$, в силу (6) имеем $\left(T_0 + \widetilde{K}^{\perp}\right)^{\sigma} = T_0^{\sigma} + \left(\widetilde{K}^{\perp}\right)^{\sigma}$. Следовательно, для доказательства включения $P_{\text{КАL}} \subseteq \text{aff } P_{\text{СЗК}}$ в силу леммы 4 достаточно убедиться в справедливости включения $\left(\widetilde{K}^{\perp}\right)^{\sigma} \subseteq L^{\perp}$. По определению имеем $\widetilde{K}^{\perp} \subseteq L^{\perp}$. Отсюда с учетом инвариантности L^{\perp} относительно S_n^1 следует справедливость $\left(\widetilde{K}^{\perp}\right)^{\sigma} \subseteq \left(L^{\perp}\right)^{\sigma} \subseteq L^{\perp}$ для произвольной σ из S_n^1 . Таким образом включение $P_{\text{KAL}} \subseteq \text{aff } P_{\text{СЗК}}$ доказано.

Теперь покажем, что полиэдр P_{KAL} является множеством решений системы slu P_{KAL} . В начале убедимся в том, что множество решений ее подсистемы slu U^{σ} совпадает с $\left(T_0 + \widetilde{\boldsymbol{K}}^{\perp}\right)^{\sigma}$, где $\sigma \in S_n^1$. Пусть $X \in \left(T_0 + \widetilde{\boldsymbol{K}}^{\perp}\right)^{\sigma}$. Тогда в силу (6) имеем $X = T_0^{\sigma} + Y^{\sigma}$, где $Y \in \widetilde{\boldsymbol{K}}^{\perp}$. Следо-

вательно,

$$(U^{\sigma}, X) = (U^{\sigma}, T_0^{\sigma} + Y^{\sigma}) = ((U^{\sigma})^{\sigma^{-1}}, (T_0^{\sigma})^{\sigma^{-1}}) + ((U^{\sigma})^{\sigma^{-1}}, (Y^{\sigma})^{\sigma^{-1}})$$
$$= (U, T_0) + (U, Y).$$

Отсюда и из неравенства $(U, Y) \ge 0$ следуют неравенства $(U^{\sigma}, X) \ge (U, T_0)$ при всех U из U. Следовательно, X — решение системы slu U^{σ} .

Обратно, пусть X — решение системы $\mathrm{slu}\, U^\sigma$. Тогда для произвольной U из U имеем

$$0 \leq (U^{\sigma}, X) - (U, T_0) = (U^{\sigma}, X) - (U^{\sigma}, T_0^{\sigma}) = (U^{\sigma}, X - T_0^{\sigma})$$
$$= (U, X^{\sigma^{-1}} - T_0),$$

т. е. матрица $Y = X^{\sigma^{-1}} - T_0$ принадлежит $\widetilde{\boldsymbol{K}}^{\perp}$. Отсюда и из (6) следует, что $X = (T_0 + Y)^{\sigma} \in \left(T_0 + \widetilde{\boldsymbol{K}}^{\perp}\right)^{\sigma}$. Далее, так как $\boldsymbol{P}_{\text{KAL}}$ по определению является пересечением конусов $\left(T_0 + \widetilde{\boldsymbol{K}}^{\perp}\right)^{\sigma}$, где σ пробегает все S_n^1 , то система slu $\boldsymbol{P}_{\text{KAL}}$, определяющая $\boldsymbol{P}_{\text{KAL}}$ в aff $\boldsymbol{P}_{\text{C3K}}$, очевидно, совпадает с объединением систем slu \boldsymbol{U}^{σ} по всем σ из S_n^1 , т. е. slu $\boldsymbol{P}_{\text{KAL}} = \bigcup_{\sigma \in S_n^1} \text{slu } \boldsymbol{U}_{\sigma}$. Лемма 5 доказана.

Лемма 6. Для произвольной σ из S_n^1 ранг системы $\mathrm{slu}\, \boldsymbol{U}^\sigma$ равен n(n-3)/2.

Доказательство. Из первого равенства, приведенного в (6), следует, что свойство линейной независимости сохраняется для перенумерованных матриц. Таким образом, для доказательства леммы 6, ввиду справедливости равенств $|\boldsymbol{U}| = |\boldsymbol{U}^{\sigma}| = n(n-3)/2$ для всех σ из S_n^1 , достаточно убедиться в линейной независимости матриц из \boldsymbol{U} . Предположив противное, т. е. наличие представления нулевой матрицы O в виде линейной комбинации матриц из \boldsymbol{U} , т. е. справедливость матричного равенства

$$\sum_{i=2}^{n-2} \lambda_i U_i + \sum_{j=1}^{n-3} \sum_{k=j+2}^{n-1} \lambda_{jk} U_{jk} = O,$$

в котором для некоторых $2\leqslant r\leqslant n-2$, либо $1\leqslant p\leqslant q-2\leqslant n-3$, соответствующие коэффициенты λ_r , либо λ_{pq} не равны нулю. Из данного матричного равенства следует, что для произвольной матрицы X из $\mathbb{R}^{n\times n}_s$ должно выполняться равенство

$$\left(\sum_{i=2}^{n-2} \lambda_i U_i + \sum_{j=1}^{n-3} \sum_{k=j+2}^{n-1} \lambda_{jk} U_{jk}, X\right) = 0.$$

Однако при $X = B_r$, либо при $X = B_{pq}$ в силу (5) и справедливы соотношения

$$\left(\sum_{i=2}^{n-2} \lambda_i U_i + \sum_{j=1}^{n-3} \sum_{k=j+2}^{n-1} \lambda_{jk} U_{jk}, X\right)$$

$$= \begin{cases} \lambda_r (U_r, B_r) = -\lambda_r (n-1)(n-2) \neq 0 & \text{при } X = B_r, \\ \lambda_{pq} (U_{pq}, B_{pq}) = -\lambda_{pq} (n-1)(n-2) \neq 0 & \text{при } X = B_{pq}. \end{cases}$$

Из полученного противоречия следует линейная независимость матриц из U. Лемма 6 доказана.

Введем в рассмотрение конус

$$\boldsymbol{K}_{0} = \left\{ \lambda \left(Y - T_{0} \right) \in \boldsymbol{L}^{\perp} \, | \, Y \in \boldsymbol{P}_{\text{C3K}}, \, \, 0 \leqslant \lambda \in \mathbb{R} \right\},$$

который совпадает со сдвигом граничного конуса политопа $P_{\text{СЗК}}$, соответствующего вершине T_0 , в нулевую матрицу O. Для введенного конуса справедлива следующая

Лемма 7. Для произвольной подстановки σ из S_n^1 выполняется следующая цепочка включений $P_{C3K}\subseteq (T_0+K_0)^\sigma\subseteq \left(T_0+\widetilde{K}^\perp\right)^\sigma$.

Доказательство. Чтобы убедиться в справедливости включения $P_{\text{СЗК}}\subseteq (T_0+K_0)^\sigma$, достаточно показать, что для произвольных матрицы Y из $P_{\text{СЗК}}$ и подстановки σ из S_n^1 матрица $Y^{\sigma^{-1}}-T_0$ принадлежит конусу K_0 . Действительно, если $X=Y^{\sigma^{-1}}-T_0\in K_0$, то в силу (6) будем иметь $X^\sigma=\left(Y^{\sigma^{-1}}-T_0\right)^\sigma=Y-T_0^\sigma$. Отсюда следует, что $Y=X^\sigma+T_0^\sigma=(T_0+X)^\sigma\in (T_0+K_0)^\sigma$. Теперь покажем, что $Y^{\sigma^{-1}}-T_0\in K_0$, если $Y\in P_{\text{СЗК}}$. Согласно лемме 3 множество vert $P_{\text{СЗК}}$ инвариантно относительно S_n^1 . Следовательно, в силу (6) политоп $P_{\text{СЗК}}$ инвариантен относительно S_n^1 , т. е. для произвольных Y из $P_{\text{СЗК}}$ и σ из S_n^1 имеем $Y^{\sigma^{-1}}\in P_{\text{СЗК}}$. Отсюда и из определения конуса K_0 следует, что $Y^{\sigma^{-1}}-T_0\in K_0$.

Убедимся в справедливости второго включения

$$(T_0 + \boldsymbol{K}_0)^{\sigma} \subseteq (T_0 + \widetilde{\boldsymbol{K}}^{\perp})^{\sigma},$$

которое в силу (6) равносильно включению $K_0 \subseteq \widetilde{K}^{\perp}$. Докажем справедливость последнего включения. Ранее отмечалось, что \widetilde{K}^{\perp} совпадает с множеством решений системы $\mathrm{slu}\, U$. Следовательно, нужно показать, что произвольная матрица C из K_0 является решением $\mathrm{slu}\, U$, т. е.

для всех U из U выполняются неравенства $(U,C)\geqslant 0$. Из определения K_0 следует, что $C=\lambda\,(Y-T_0)$, где $0\leqslant\lambda\in\mathbb{R}$ и $Y\in P_{\mathrm{C3K}}$. Так как по лемме 3 множество vert P_{C3K} совпадает с множеством матриц T, то $Y=\sum_{\sigma\in S_n^1}\mu_\sigma T_0^\sigma$, где $0\leqslant\mu_\sigma\in\mathbb{R}$ и $\sum_{\sigma\in S_n^1}\mu_\sigma=1$. Следовательно,

$$C = \lambda \left(\sum_{\sigma \in S_n^1} \mu_{\sigma} T_0^{\sigma} - T_0 \right) = \lambda \left(\sum_{\sigma \in S_n^1} \mu_{\sigma} T_0^{\sigma} - \sum_{\sigma \in S_n^1} \mu_{\sigma} T_0 \right) = \sum_{\sigma \in S_n^1} \nu_{\sigma} \left(T_0^{\sigma} - T_0 \right),$$

где $\nu_{\sigma}=\lambda\mu_{\sigma}\geqslant 0,\ \sigma\in S_{n}^{1},$ и для скалярного произведения матриц C из \boldsymbol{K}_{0} и U из \boldsymbol{U} имеем $\left(U,\,C\right)=\left(U,\,\sum_{\sigma\in S_{n}^{1}}\nu_{\sigma}\!\left(T_{\scriptscriptstyle 0}^{\sigma}\!-\!T_{\scriptscriptstyle 0}\right)\right)=\sum_{\sigma\in S_{n}^{1}}\nu_{\sigma}\!\left(U,\,T_{\scriptscriptstyle 0}^{\sigma}\!-\!T_{\scriptscriptstyle 0}\right).$

Ввиду неотрицательности коэффициентов ν_{σ} для всех σ из S_n^1 требуемые неравенства $(U,C)\geqslant 0$ при всех U из U, очевидно, будут выполняться, если справедливы неравенства $(U,T_0^{\sigma}-T_0)\geqslant 0$ для всех U из U и σ из S_n^1 , которые равносильны неравенствам $(U,T_0^{\sigma})\geqslant (U,T_0)$. По теореме 3 последние неравенства справедливы, так как матрицы U из U являются направляющими крайних лучей K^{\perp} и, следовательно, принадлежат конусу Кальмансона $K=L+K^{\perp}$. Лемма 7 доказана.

Введем в рассмотрение транспозиции $\sigma=(i,k)$, где $i=2,\ldots,n-2$, $k=i+1,\ldots,n-1$. Напомним, что транспозицией σ называется подстановка, в которой перемещаются только два элемента.

Лемма 8.

- (a) Если $B \in \mathbf{B}_1 \setminus \{B_{i-1}, B_{k-1}, B_k, B_{i-1k-1}, B_{i-1k}\}, 2 \leqslant i \leqslant n-2,$ $1 \leqslant i \leqslant k-1 \leqslant n-2$, то в разложение матрицы $B^{(i,k)}$ по базису \mathbf{B}_1 не входит матрица B_i ;
- (b) матрицы $B_{i-1}^{(i,k)},\ B_{k-1}^{(i,k)},\ B_k^{(i,k)},\ B_{i-1k-1}^{(i,k)},\ B_{i-1k}^{(i,k)},\ 2\leqslant i\leqslant n-2,$ $1\leqslant i\leqslant k-1\leqslant n-2,$ имеют следующие разложения по базису \boldsymbol{B}_1 :

$$B_{i-1}^{(i,k)} = B_{i-1} + B_i + \sum_{s=i+1}^{k-1} B_s, \quad B_{k-1}^{(i,k)} = -B_i - \sum_{s=i+1}^{k-2} B_s,$$

$$B_k^{(i,k)} = B_i + \sum_{s=i+1}^{k} B_s,$$

$$B_{i-1k-1}^{(i,k)} = B_i + \sum_{s=i+1}^{k-1} B_s + \sum_{u=1}^{i-2} \sum_{v=i}^{k-2} B_{uv} + \sum_{u=i}^{n-2} \sum_{v=k}^{n-1} B_{uv},$$

$$B_{i-1k}^{(i,k)} = -B_i + B_{i-1k} - \sum_{s=i+1}^{k-1} B_s - \sum_{s=i+1}^{i-2} \sum_{s=i+1}^{k-1} B_{uv} - \sum_{s=i+1}^{n-1} \sum_{s=i+1}^{n-1} B_{uv}.$$

Доказательство. Для матриц B_r при $r \neq i-1, i, k-1, k$ с учетом (2), свойств перенумерованных матриц (6), (7) и свойств транспозиции $\sigma = (i, k)$ следуют равенства

$$\begin{split} B_r^{\sigma} &= F_{\sigma(1)\sigma(r)} + F_{\sigma(r+1)\sigma(n)} - F_{\sigma(1)\sigma(r+1)} - F_{\sigma(r)\sigma(n)} \\ &= F_{1r} + F_{r+1n} - F_{1r+1} - F_{rn} = B_r. \end{split}$$

По аналогии устанавливается справедливость равенств $B_{pq}^{\sigma} = B_{pq}$ при $p \neq i-1, i$ и $q \neq k-1, k$. Из соотношений (2), (6), (7), (11) и свойств транспозиции $\sigma = (i, k)$ для матрицы B_i следует, что

$$B_{i}^{\sigma} = F_{\sigma(1)\sigma(i)} + F_{\sigma(i+1)\sigma(n)} - F_{\sigma(1)\sigma(i+1)} - F_{\sigma(i)\sigma(n)} = F_{1k} + F_{i+1n} - F_{1i+1} - F_{kn}$$
$$= -B_{1i+1kn}' = -\sum_{s=i+1}^{k-1} B_{s}.$$

Для матриц B_{pq} , где p = i и q = k-1, k, учитывая свойства транспозиции $\sigma = (i, k)$, соотношения (2), (6), (7), (9)–(11) и лемму 2, получаем

$$\begin{split} B^{\sigma}_{ik-1} &= F_{\sigma(i)\sigma(k)} + F_{\sigma(i+1)\sigma(k-1)} - F_{\sigma(i)\sigma(k-1)} - F_{\sigma(i+1)\sigma(k)} \\ &= F_{ki} + F_{i+1k-1} - F_{kk-1} - F_{i+1i} = B_{ik-1} - B_{ii+1k-1k}' \\ &= B_{ik-1} - \sum_{s=i+1}^{k-2} B_s - \sum_{u=1}^{i-1} \sum_{v=i+1}^{k-2} B_{uv} - \sum_{u=i+1}^{k-2} \sum_{v=k}^{n-1} B_{uv}, \\ B^{\sigma}_{ik} &= F_{\sigma(i)\sigma(k+1)} + F_{\sigma(i+1)\sigma(k)} - F_{\sigma(i)\sigma(k)} - F_{\sigma(i+1)\sigma(k+1)} \\ &= F_{kk+1} + F_{i+1i} - F_{ki} - F_{i+1k+1} = \\ B'_{ii+1kk+1} &= B'_{1i+1kn} + B''_{1ii+1k} + B''_{i+1kk+1n} \\ &= \sum_{s=i+1}^{k-1} B_s + \sum_{u=1}^{i-1} \sum_{v=i+1}^{k-1} B_{uv} + \sum_{u=i+1}^{k-1} \sum_{v=k+1}^{n-1} B_{uv}. \end{split}$$

Из полученных соотношений следует справедливость предложения (a). Предложение (b) леммы 8 доказывается аналогичным образом с помощью леммы 2 и соотношений (2), (6), (7). Лемма 8 доказана.

Переходим к формулировке и доказательству основного утверждения данной статьи.

Теорема 4. Полиэдр P_{KAL} является релаксацией политопа P_{C3K} , для которой выполняются свойства (13).

Доказательство. В силу леммы 5 $P_{\text{KAL}} \subseteq \text{aff } P_{\text{C3K}}$, что влечет

 $\dim P_{\text{KAL}} \leqslant \dim (\text{aff } P_{\text{СЗК}}).$ Далее по лемме 7 выполняется включение $P_{\text{СЗК}} \subseteq \left(T_0 + \widetilde{P}^\perp\right)^\sigma$ для произвольных $\sigma \in S_n^1$, из которого следует вклю-

чение
$$m{P}_{ ext{C3K}} \subseteq \bigcap_{\sigma \in S_n^1} \left(T_0 + \widetilde{m{K}}^\perp\right)^\sigma = m{P}_{ ext{KAL}}.$$
 Поэтому $\dim m{P}_{ ext{C3K}} \leqslant \dim m{P}_{ ext{KAL}}.$

Из приведенных неравенств и теоремы 2 получаем равенства dim P_{C3K} = dim $P_{\text{KAL}} = n(n-3)/2$, из которых следует, что P_{KAL} имеет в aff P_{C3K} полную размерность. Таким образом, согласно [7, с. 161] каждая вершина V из vert P_{KAL} определяется некоторой подсистемой системы slu P_{KAL} ранга n(n-3)/2, в которой каждое неравенство обращается матрицей V в равенство. Так как множество vert P_{C3K} , совпадающее по лемме 3 с множеством матриц T, также содержится в P_{KAL} ввиду $P_{\text{C3K}} \subseteq P_{\text{KAL}}$, то для доказательства включения vert $P_{\text{C3K}} \subseteq \text{vert } P_{\text{KAL}}$ достаточно убедиться в существовании для матриц из $T = \text{vert } P_{\text{C3K}}$ подсистем системы slu P_{KAL} указанного выше вида.

Выберем в T произвольную матрицу T_0^{σ} , где $\sigma \in S_n^1$, и убедимся, что искомой системой является система slu U^{σ} . Действительно, по лемме 6 ранг системы slu U^{σ} равен n(n-3)/2 и в силу (6) выполняются равенства $\left(U^{\sigma}, T_0^{\sigma}\right) = \left(\left(U^{\sigma}\right)^{\sigma^{-1}}, \left(T_0^{\sigma}\right)^{\sigma^{-1}}\right) = \left(U, T_0\right)$, т. е. каждое неравенство из системы slu U^{σ} обращается матрицей T_0^{σ} в равенство. Таким образом, справедливо включение vert $P_{\text{C3K}} \subseteq \text{vert } P_{\text{KAL}}$. Следовательно, для завершения доказательства теоремы 4 осталось убедиться в том, что полиэдр P_{KAL} — политоп, т. е. ограничен.

Согласно [7, с. 164] полиэдр P_{KAL} представим в виде $P_{\text{KAL}} = P' + \text{сhar. cone } P_{\text{KAL}}$, где P' — некоторый политоп, char. cone P_{KAL} — характеристический конус полиэдра P_{KAL} , который совпадает с множеством решений однородной системы линейных неравенств slu (char. cone P_{KAL}) = $\left\{ (U^{\sigma}, Y) \geqslant 0 \,|\, U \in U, \ \sigma \in S_n^1 \right\}$. Из приведенного представления следует, что P_{KAL} — ограничен, если char. cone $P_{\text{KAL}} = \{O\}$. Так как \widetilde{K}^{\perp} совпадает с множеством решений подсистемы slu U системы неравенств slu (char. cone P_{KAL}), то char. cone $P_{\text{KAL}} \subseteq \widetilde{K}^{\perp} \subseteq L^{\perp}$. Следовательно, произвольная матрица Y из char. cone P_{KAL} представима в виде линейной комбинации матриц из множества B_1 , являющегося базисом L^{\perp} , т. е. для матрицы Y имеет место равенство

$$Y = \sum_{r=2}^{n-2} \mu_r B_r + \sum_{p=1}^{n-3} \sum_{q=p+2}^{n-1} \mu_{pq} B_{pq}, \quad \mu_r, \, \mu_{pq} \in \mathbb{R}.$$
 (14)

Покажем, что для коэффициентов из представления (14) матрицы Y

выполняются равенства

$$\mu_r = 0, \ r = 2, \dots, n-2, \quad \mu_{pq} = 0, \quad p = 1, \dots, n-3,$$

$$q = p+2, \dots, n-1, \quad (15)$$

из которых следует справедливость char. cone $P_{\text{KAL}} = \{O\}$, т. е. ограниченность полиэдра P_{KAL} . Сначала убедимся в том, что коэффициенты из представления (14) неположительны, т. е.

$$\mu_r \le 0, \quad r = 2, \dots, n-2, \quad \mu_{pq} \le 0, \quad p = 1, \dots, n-3,$$

$$q = p+2, \dots, n-1. \quad (16)$$

Из определения char. cone P_{KAL} , (14) и соотношения (5) следует справедливость соотношений

$$0 \leqslant (U_r, Y) = \mu_r(U_r, B_r), \quad 0 \leqslant (U_{pq}, Y) = \mu_{pq}(U_{pq}, B_{pq}),$$

при всех $2 \leqslant r \leqslant n-2$, $1 \leqslant p \leqslant q-2 \leqslant n-3$. Отсюда в силу неравенств $(U_r, B_r) < 0$, $(U_{pq} \text{ и } B_{pq}) < 0$, следуют неравенства (16).

Теперь укажем такую однородную систему линейных неравенств, зависящую от переменных μ_r и μ_{pq} , где $2\leqslant r\leqslant n-2$ и $1\leqslant p\leqslant q-2\leqslant n-3$, что ее объединение с (16) совпадает с равенствами (15). Рассмотрим транспозиции (i,k), где $2\leqslant i\leqslant n-2,\ i+1\leqslant k\leqslant n-1$. В силу (6) и (14) произвольная матрица $Y^{(i,k)}$ представима в виде линейной комбинации перенумерованных матриц из \boldsymbol{B}_1 :

$$Y^{(i,k)} = \sum_{r=2}^{n-2} \mu_r B_r^{(i,k)} + \sum_{p=1}^{n-3} \sum_{q=p+2}^{n-1} \mu_{pq} B_{pq}^{(i,k)}, \quad \mu_r, \, \mu_{pq} \in \mathbb{R}.$$
 (17)

Так как в силу леммы 4 пространство L^{\perp} инвариантно относительно S_n^1 , то матрицы $B_r^{(i,k)}$ и $B_{pq}^{(i,k)}$ из (17) принадлежат пространству L^{\perp} . Следовательно они представимы в виде линейных комбинаций матриц из B_1 . Подставляя в (17) вместо матриц $B_r^{(i,k)}$ и $B_{pq}^{(i,k)}$, где $2\leqslant r\leqslant n-2$ и $1\leqslant p\leqslant q-2\leqslant n-3$, их соответствующие представления в виде линейных комбинаций матриц из B_1 и группируя коэффициенты при каждой матрице B из B_1 , с учетом леммы 8 получим следующие разложения матриц $Y^{(i,k)}$, $2\leqslant i\leqslant n-2$, $i+1\leqslant k\leqslant n-1$, по базису B_1 :

$$Y^{(i,k)} = \sum_{B \in \mathbf{B}_1 \setminus \{B_i\}} \nu_{B,i,k} B + (\mu_{i-1} - \mu_{k-1} + \mu_k + \mu_{i-1k-1} - \mu_{i-1k}) B_i, \quad (18)$$

где $\nu_{B,i,k}$ — некоторые линейные функции, зависящие от коэффициентов μ_r и μ_{pq} , $2\leqslant r\leqslant n-2$, $1\leqslant p\leqslant q-2\leqslant n-3$. Так как матрица $Y\in$ char. cone $P_{\text{каl}}$, то $\left(U_i^{(i,k)},Y\right)\geqslant 0$ при $2\leqslant i\leqslant n-2$, $1\leqslant i\leqslant k-1\leqslant n-2$. Отсюда с учетом (18), (5) и (6) следует справедливость соотношений $0\leqslant \left(U_i^{(i,k)},Y\right)=\left(U_i,Y^{(i,k)}\right)=\left(\mu_{i-1}-\mu_{k-1}+\mu_k+\mu_{i-1k-1}-\mu_{i-1k}\right)\left(U_i,B_i\right)$ при всех $2\leqslant i\leqslant n-2$, $1\leqslant i\leqslant k-1\leqslant n-2$. Полученные соотношения и неравенства $\left(U_i,B_i\right)<0$, которые в силу теоремы 1 справедливы при всех $i=2,\ldots,n-2$, приводят к системе неравенств

$$\mu_{i-1} - \mu_{k-1} + \mu_k + \mu_{i-1k-1} - \mu_{i-1k} \leq 0,$$

$$i = 2, \dots, n-2, \quad k = i+1, \dots, n-1.$$
(19)

Учитывая, что матрицы B_1 , B_{n-1} , B_{ii-1} не принадлежат B_1 при $i=2,\ldots,n-2$ (так как для указанных номеров они вообще не определялись), то соответствующие им коэффициенты в (16) можно считать равными нулю, т. е. $\mu_1 = \mu_{n-1} = \mu_{i-1} = 0$ при всех $i=2,\ldots,n-2$.

Покажем, что из (16) и (19) следует (15). Предположим, что в (14) среди μ_r , где $r=2,\ldots,n-2$, есть ненулевые и пусть μ_i — первый из них, т. е. $\mu_2=\ldots=\mu_{i-1}=0$. Тогда, просуммировав по $k=i+1,\ldots,n-1$ неравенства $\mu_{i-1}-\mu_{k-1}+\mu_k+\mu_{i-1k-1}-\mu_{i-1k}\leqslant 0$, получим неравенствоследствие системы (19) вида $\sum\limits_{k=i+1}^{n-1}\left(\mu_{i-1}-\mu_{k-1}+\mu_k+\mu_{i-1k-1}-\mu_{i-1k}\right)\leqslant 0$.

Несложные преобразования левой части неравенства-следствия показывают, что она равна

$$(n-i-1)\mu_{i-1} - \sum_{k=i+1}^{n-1} \mu_{i-1} + \sum_{k=i+1}^{n-1} \mu_k + \sum_{k=i+1}^{n-1} \mu_{i-1k-1} - \sum_{k=i+1}^{n-1} \mu_{i-1k}$$

$$= -\sum_{k=i}^{n-2} \mu_k + \sum_{k=i+1}^{n-1} \mu_k + \sum_{k=i}^{n-2} \mu_{i-1k} - \sum_{k=i+1}^{n-1} \mu_{i-1k} + \sum_{k=i-1}^{n-2} (\mu_{i-1k} - \mu_{i-1k}) - \mu_{i-1n-1}$$

$$= -\mu_i - \mu_{i-1n-1},$$

так как $\mu_{i-1} = \mu_{n-1} = \mu_{i-1i} = 0$. Таким образом, полученное выше неравенство-следствие равносильно неравенству $\mu_i + \mu_{i-1n-1} \geqslant 0$, из которого с учетом неравенства $\mu_i \leqslant 0$, $\mu_{i-1n-1} \leqslant 0$ следуют равенства $\mu_i = 0$, $\mu_{i-1n-1} = 0$. Таким образом, доказано равенство нулю всех коэффициентов вида μ_i и μ_{i-1n-1} из (14) при всех $i = 2, \ldots, n-2$. Далее из равенств $\mu_i = 0$, где $i = 2, \ldots, n-2$, и (19) следует справедливость неравенства $\mu_{i-1k-1} - \mu_{i-1k} \leqslant 0$ при всех $i = 2, \ldots, n-2$, $k = i+1, \ldots, n-1$,

т. е. для каждого фиксированного i, где $2\leqslant i\leqslant n-2$, имеет место цепочка неравенств $\mu_{i-1i}\leqslant \mu_{i-1i+1}\leqslant \ldots\leqslant \mu_{i-1n-2}\leqslant \mu_{i-1n-1}$, из которой в силу $\mu_{i-1i}=0$ и $\mu_{i-1n-1}=0$, следуют равенства $\mu_{i-1i+1}=\mu_{i-1i+2}=\ldots=\mu_{i-1n-3}=\mu_{i-1n-1}=0$ при любом $i=2,\ldots,n-2$. Таким образом, доказана справедливость равенств (15) для коэффициентов из представления вида (14) произвольной матрицы Y, принадлежащей конусу char. cone P_{KAL} . Тем самым доказана ограниченность полиэдра P_{KAL} . Теорема 4 доказана.

4. Заключение

Теоретическая и практическая значимость построения релаксаций политопа задачи о коммивояжере обусловлена тем, что до настоящего времени не получено его полиэдрального описания. Выделены лишь некоторые достаточно представительные классы его фасет, используемые в методах отсечения, и построены отдельные его релаксации [5, 21, 25, которые позволяют применять хорошо развитый аппарат линейного программирования для вычисления нижних оценок оптимальных значений функционала ЗК [21, 25]. К настоящему времени с помощью предложенной методики, использующей сильно разрешимые случаи задачи о коммивояжере, помимо P_{KAL} , построены релаксации ее политопа на основе условий Супника [28] и обобщенных условий Супника [3], которые также как и условия Кальмансона гарантируют сильную разрешимость $3 \mathrm{K}$. Система неравенств $\mathrm{slu} \, P_{\mathrm{KAL}}$, описывающая релаксационный политоп P_{KAL} , является избыточной, в чем нетрудно убедиться. Выделение в ней неизбыточной подсистемы, эквивалентной системе slu $m{P}_{ ext{KAL}}$, представляет определенный теоретический и практический интерес и является предметом дальнейших исследований. Следует отметить, что как полученные ранее [25] релаксации СЗК, так и P_{KAL} могут быть использованы для выявления фасет политопа СЗК, которые играют важную роль в методах "ветвей и границ" и методах отсечений, ориентированных на решение СЗК.

ЛИТЕРАТУРА

- 1. Буркард Р. Е., Демиденко В. М., Рудольф Р. Обобщенные условия Супника и Кальмансона и их применение к симметрической и несимметрической задаче о коммивояжере // Весці Акадэміі навук Беларусі. Сер. фіз.-мат. навук. 1996. № 3. С. 69–74.
- **2.** Демиденко В. М. Специальные случаи задачи о бродячем торговце с симметрической матрицей // Докл. АН БССР. 1980. Т. 24, № 2. С. 105—108.

- **3.** Демиденко В. М. Обобщение условий Супника на несимметрический случай // Тр. Ин-та математики НАН Беларуси. Т. 3. Минск, 1999. С. 141–148.
- **4.** Демиденко В. М. Описание конуса матриц Кальмансона в пространстве минимальной размерности // Весці Нацыянальнай Акадэміі навук Беларусі. Сер. фіз.-мат. навук. 2000. № 3. С. 116–122.
- **5. Емеличев В. А., Ковалев М. М., Кравцов М. К.** Многогранники, графы, оптимизация. М.: Наука, 1981.
- 6. Супруненко Д. А. Группы подстановок. Минск: Навука і тэхніка, 1996.
- 7. Схрейвер А. Теория линейного и целочисленного программирования в двух томах. Т. 1. Пер. с англ. М.: Мир, 1991.
- 8. Черников С. Н. Линейные неравенства. М.: Наука, 1968.
- 9. Burkard R. E., Deĭneko V. G., van Dal R., van der Veen J. A. A., Woeginger G. J. Well-solvable special cases of the TSP: a survey // SIAM Rev. 1998. V. 40, N. 3. P. 496–546.
- 10. Burkard R. E., Demidenko V. M., Rudolf R. A general approach for identifying special cases of the traveling salesman problem with a fixed optimal tour // OR Transactions of China. 1997. V. 1, N. 1. P. 41–53.
- 11. Burkard R. E., Klinz B., Rudolf R. Perspectives of Monge properties in optimization // Discrete Appl. Math. 1996. V. 70, N 2. P. 95–161.
- 12. Dantzig G. B., Fulkerson D. R., Johnson S. M. Solution of a large-scale traveling-salesman problem // J. Operations Res. Soc. Amer. 1954. V. 2. P. 393–410.
- 13. Deĭneko V. G., Rudolf R., Woeginger G. J. Sometimes traveling is easy: the master tour problem. Graz, 1994. (Report / Institute of Mathematics. Techn. Univ. Graz; N. 15).
- 14. Demidenko V. M. An extension of Supnick conditions for the asymmetric traveling salesman problem and its application // ECCO VIII. Abstractes. Poznan, 1995. P. 26.
- **15. Demidenko V. M.** Kanonische Beschreibung des Kegels von Mongeschen Matrizen // Minsk, 1996. (Preprint / Akademie der Wissenschaften von Belarus. Institut für Mathematik; № 7(519)).
- **16. Demidenko V. M., Rudolf R.** A note on Kalmanson matrices // Optimization. 1997. V. 40, N 3. P. 285–294.
- 17. Guy R., Hanani H., Sauer N., Schonheim J. Combinatorial structures and their applications. New York: Gordon and Breach, 1970.
- **18. Grötschel M.** The monotone 2-matching polytope on a complete graph // Oper. Res. Verfahren. 1977. V. 24. P. 77–84.

- **19. Grötschel M.** On the monotone symmetric travelling salesman problem: hypohamiltonian/ hypotraceable graphs and facets // Math. Oper. Res. 1980. V. 5, N 2. P. 285–292.
- 20. Grötschel M., Pulleyblank W. R. Clique tree inequalities and the symmetric travelling salesman problem // Math. Oper. Res. 1986. V. 11, N. 4. P. 537–569.
- **21. Gutin G., Punnen A. P.** The traveling salesman problem and its variations. Dordrecht: Kluwer Academic Publishers, 2002.
- **22.** Held M., Karp R. M. The traveling-salesman problem and minimum spanning trees // Oper. Res. 1970. V. 18, N 6. P. 1138–1162.
- 23. Held M., Karp R. M. The traveling-salesman problem and minimum spanning trees: part II // Math. Programming. 1971. V. 1, N 1. P. 6–25.
- **24.** Kalmancon K. Edgeconvex circuits and the traveling salesman problem // Canad. J. Math. 1975. V. 27, N 5. P. 1000–1010.
- 25. Lawler E. L., Lenstra J. K., Rinnooy Kan A. H. G., Shmoys D. B. The traveling salesman problem. Chichester: Wiley, 1985.
- **26.** Papadimitriou C. H. The adjacency relation on the traveling salesman polytope is NP-complete // Math. Programming. 1978. V. 14, N 3. P. 312–324.
- **27. Papadimitriou C. H., Yannakakis M.** The complexity of facets (and some facets of on the complexity) // J. Comput. System Sci. 1984. V. 28, N 2. P. 244–259.
- 28. Supnick F. Extreme Hamiltonian lines // Annals of Math. 1957. V. 66. P. 179–201.

Адрес автора:

Статья поступила 20 августа 2001 г.

Институт математики НАН Беларуси, ул. Сурганова, 11, 220072 Минск, Беларусь. E-mail: demidenko@im.bas-net.by