О МИНИМАЛЬНЫХ ТЕСТАХ ДЛЯ СХЕМ, РЕАЛИЗУЮЩИХ ДИЗЪЮНКЦИЮ

С. Р. Беджанова

Исследуются тесты для схем из функциональных элементов, реализующих дизъюнкцию n переменных. В качестве неисправностей рассматриваются инверсные неисправности: на входах схем, на входах элементов схем и на выходах элементов схем. В первом случае для тестов функции установлено, что длина минимального полного проверяющего теста равна единице, длина минимального единичного диагностического теста равна n, а длина минимального полного диагностического теста равна 2^n-1 . Во втором и третьем случаях найдены минимальные единичные тесты для схем в базисах $\{x \lor y\}$ и $\{\overline{x}, x \to y\}$. Оказалось, что для обоих базисов при неисправностях на выходах элементов минимальные единичные диагностические тесты содержат по два набора, а во всех остальных случаях минимальные единичные тесты содержат по одному набору.

Введение

Будем рассматривать схемы из функциональных элементов, реализующие дизьюнкцию n переменных. Среди этих схем будем выделять те, которые допускают тесты минимально возможной длины, и будем устанавливать длину таких минимальных тестов; как обычно, минимум берётся сперва по всем тестам определённого типа для определённой схемы, реализующей $f(\tilde{x}) = x_1 \lor \cdots \lor x_n$, а затем по всем схемам, реализующим $f(\tilde{x})$ (используемые ниже определения различных тестов, длины теста, минимального теста, функции неисправности, тестов функции и наиболее часто встречающихся неисправностей можно найти, например, в [2-4]).

1. Минимальные тесты функции

Пусть неисправен только один вход схемы, реализующей в исправном состоянии функцию $f(\tilde{x}) = x_1 \lor \cdots \lor x_n$. Тогда возможны следующие функции неисправности: $g_1 = \overline{x_1} \lor x_2 \lor \cdots \lor x_n$, $g_2 = x_1 \lor \overline{x_2} \lor \cdots \lor x_n$, ..., $g_n = x_1 \lor x_2 \lor \cdots \lor \overline{x_n}$. Так как $g_1(\tilde{0}) = \cdots = g_n(\tilde{0}) = 1$, а $f(\tilde{0}) = 0$, то

справедлива

Teopeмa 1. Минимальный единичный проверяющий тест функции $x_1 \lor \cdots \lor x_n$ состоит из одного набора.

Рассмотрим таблицу 1, в клетках которой находятся наборы, на которых различаются соответствующие функции; $A = \{(0,...,0), (1,0,...,0), (0,1,0,...,0), ..., (0,1,0,...,0)\}$ — множество всех наборов таблицы.

	g_1	g_2	 g_{n-1}	g_n
f	(0,0,0,,0)	(0,0,0,,0)	 (0,0,0,,0)	(0,0,0,,0)
	(1,0,0,,0)	(0,1,0,,0)	(0,,0,1,0)	(0,,0,0,1)
g_1		(1,0,0,,0)	 (1,0,0,,0)	(1,0,0,,0)
		(0,1,0,,0)	(0,,0,1,0)	(0,,0,0,1)
g_2			 (0,1,0,,0)	(0,1,0,,0)
			(0,,0,1,0)	(0,,0,0,1)
g_{n-1}				(0,0,0,,0)
				(0,,0,0,1)

Таблица 1.

Построим всевозможные тупиковые диагностические тесты. Предположим, что T_0 — некоторый тест и $\tilde{0} \notin T_0$. В таком случае по первой строке таблицы 1 видно, что $(1,0,...,0), (0,1,0,...,0), ..., (0,...,0,1) \in T_0$, т. е. $A\setminus \{\tilde{0}\}\subseteq T_0$. С другой стороны, любой набор, на котором $g_i\neq g_j$, имеет вид (0,...,0,1,0,...,0) и принадлежит множеству $A\setminus \{\tilde{0}\}$. Следовательно, T_0 является тупиковым тестом. Предположим теперь, что T_i — некоторый тест, в котором отсутствует набор $\tilde{\sigma}_i$, содержащий единицу в i-м разряде и нули в остальных разрядах, $1\leqslant i\leqslant n$. В этом случае по i-му столбцу и (i-1)-й строке таблицы 1 видно, что в T_i входят все наборы из $A\setminus \{\tilde{\sigma}_i\}$, а с другой стороны, $A\setminus \{\tilde{\sigma}_i\}$ является тестом. Таким образом, справедлива

Теорема 2. Минимальный единичный диагностический тест функции $x_1 \lor \cdots \lor x_n$ состоит из n наборов.

Пусть неисправны ровно k входов схемы. Без ограничения общности будем считать, что это первые k входов. Тогда функция неисправности примет вид $g=\overline{x_1}\vee\overline{x_2}\vee...\overline{x_k}\vee x_{k+1}\vee...\vee x_n$. В этом случае $g(\tilde{0})=1$, $f(\tilde{0})=0$ и справедлива

Теорема 3. Минимальный полный проверяющий тест функции $x_1 \lor \cdots \lor x_n$ состоит из одного набора.

Для полных диагностических тестов имеет место

Теорема 4. Минимальный полный диагностический тест функции $x_1 \lor \cdots \lor x_n$ состоит из $2^n - 1$ набора.

Доказательство. Верхняя оценка. Пусть E_2^n — множество всех булевых наборов длины n. Рассмотрим множество $E_2^n \setminus \{0\}$. При повреждении і-го входа схемы в дизъюнкции переменных, реализующих функцию неисправности, вместо слагаемого x_i появляется \overline{x}_i . Пусть $q(\tilde{x})$ функция неисправности, получающаяся при повреждении некоторых, например, первых k входов. Функция $q(\tilde{x})$ обращается в нуль на наборе (1,...,1,0,...,0), содержащем единицы в первых k разрядах (этот набор входит в $E_2^n \setminus \{\tilde{0}\}$), а исходная дизъюнкция $x_1 \vee \cdots \vee x_n$ на этом наборе обращается в единицу. Следовательно, $E_2^n \setminus \{\tilde{0}\}$ является полным проверяющим тестом. Далее пусть $g_1(\tilde{x})$ и $g_2(\tilde{x})$ — две различные функции неисправности. Множество переменных $X = \{x_1, ..., x_n\}$ разобьём на три подмножества X_1, X_2, X_3 , где X_1 содержит переменные, вошедшие в дизъюнкции g_1 и g_2 с отрицаниями, X_2 содержит переменные, вошедшие в g_1 с отрицаниями, а в g_2 без отрицаний, и, наконец, X_3 содержит переменные, вошедшие в g_1 и g_2 без отрицаний; поскольку g_1 и g_2 различные дизъюнкции, то подмножество X_2 не может быть пустым. Возьмём булев набор $\tilde{\sigma}$, получающийся из $(x_1,...,x_n)$ при замещении переменных из $X_1 \cup X_2$ единицами, а переменных из X_3 — нулями. Легко заметить, что $\tilde{\sigma} \in E_2^n \setminus \{0\}$ и $g_1(\tilde{\sigma}) = 0$, а $g_2(\tilde{\sigma}) = 1$. Получаем, что $E_2^n \setminus \{0\}$ действительно является полным диагностическим тестом.

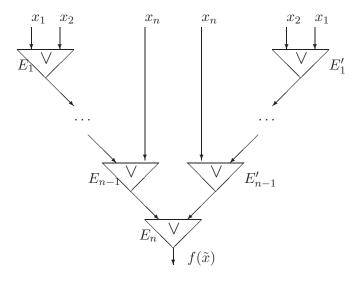
Hижняя оценка. Предположим, что существует множество A из 2^n-2 булевых наборов, составляющих полный диагностический тест функции $x_1 \lor \cdots \lor x_n$. Пусть $\tilde{\sigma}_1$, $\tilde{\sigma}_2$ — наборы, отсутствующие в A. Без ограничения общности можем считать, что первые k разрядов в $\tilde{\sigma}_1$ — нули, а в $\tilde{\sigma}_2$ — единицы, последующие m разрядов в обоих наборах — единицы, а все остальные разряды в $\tilde{\sigma}_1$ и $\tilde{\sigma}_2$ — нули; ясно, что $k \geqslant 1$. Рассмотрим функцию неисправности g_1 , получающуюся при повреждении (k+1)-го,..., (k+m)-го входов, и функцию неисправности g_2 , получающуюся при повреждении 1-го,..., (k+m)-го входов (одна из функций g_1, g_2 может оказаться равной f при отсутствии повреждений). Функция g_1 обращается в 0 только на наборе $\tilde{\sigma}_2$. Следовательно, g_1 и g_2 различаются только на наборах $\tilde{\sigma}_1$, $\tilde{\sigma}_2$ и один из этих наборов должен присутствовать в A. Получаем противоречие, исключающее наше предположение. Теорема 4 доказана.

2. Единичные тесты для схем в базисе $\{x \lor y\}$

Сначала рассмотрим неисправности на выходах элементов. Введём следующие обозначения. Пусть T — тест (единичный или полный, про-

веряющий или диагностический) схемы S; через D(T) обозначим длину этого теста, т. е. число наборов в нём. Пусть $D_{\text{вых,EПT}}^{\{\vee\}}(S) = \min D(S)$, где минимум берётся по всем единичным проверяющим тестам для схемы S, а $D_{\text{вых,EПT}}^{\{\vee\}}(x_1\vee\ldots\vee x_n) = \min D_{\text{вых,EПT}}^{\{\vee\}}(S)$, где минимум берётся по всем схемам (в базисе $\{x\vee y\}$), реализующим $x_1\vee\ldots\vee x_n$. Аналогичным образом вводятся функции Шеннона $D_{\text{вых,EДT}}^{\{\vee\}}(x_1\vee\ldots\vee x_n)$ для единичных диагностических тестов, $D_{\text{вых,ППТ}}^{\{\vee\}}(x_1\vee\ldots\vee x_n)$ для полных проверяющих тестов и $D_{\text{вых,ПДТ}}^{\{\vee\}}(x_1\vee\ldots\vee x_n)$ для полных диагностических тестов. Заметим, что в данной статье при исследовании единичных тестов рассматриваются, как обычно (см., например, [2]), неизбыточные схемы.

Реализуем $f(\tilde{x}) = (x_1 \lor \cdots \lor x_n)$ схемой, изображённой на рис. 1.



Puc. 1

При повреждении элемента E_i или $E_i', 1 \le i \le n-1$, на выходе схемы S получим функцию неисправности $g_i(\tilde{x}) = \overline{x_1 \vee \dots \vee x_{i+1}} \vee x_1 \vee \dots \vee x_n \equiv 1$. При повреждении выходного элемента E_n получим функцию неисправности $g_n(\tilde{x}) = \overline{x_1 \vee \dots \vee x_n}$. Имеем $g_1(\tilde{0}) = \dots = g_n(\tilde{0}) = 1$, а $f(\tilde{0}) = 0$, т. е. справедлива

Теорема 5. $D_{\text{вых, ЕПТ}}^{\{\vee\}}(x_1 \vee ... \vee x_n) = 1.$

Для диагностических тестов справедлива

Теорема 6.
$$D_{\text{вых, ЕДТ}}^{\{\vee\}}(x_1 \vee ... \vee x_n) = 2.$$

Доказательство. Заметим, что для схемы S (рис. 1) возможны только две нетривиальные функции неисправности: $g_1(\tilde{x}) \equiv 1$ и $g_2(\tilde{x}) = \overline{x_1 \vee \dots \vee x_n}$. В качестве единичного диагностического теста можем взять, например, два набора $\tilde{0}$ и $\tilde{1}$; отсюда следует верхняя оценка $D_{\text{Вых}, \to ZT}^{\{\vee\}}(x_1 \vee \dots \vee x_n) \leqslant 2$.

Убедимся, что для любой схемы, реализующей $x_1 \lor ... \lor x_n$, существует не менее двух различных нетривиальных функций неисправности. Пусть S' — произвольная схема, реализующая f. При повреждении выходного элемента схема S' реализует нетривиальную функцию неисправности $g(\tilde{x}) = \overline{x_1 \lor \cdots \lor x_n}$. Легко заметить, что в схеме S' обязательно найдётся элемент E, на входы которого подаются две переменные (возможно, даже с выходов других элементов), например, x_1 и x_2 , и который в исправном состоянии реализует $x_1 \lor x_2$. При неисправности одного этого элемента схема S' будет выдавать, как нетрудно заметить, одну из следующих функций:

$$\begin{array}{l} g_1(\tilde{x}) = \overline{x_1 \vee x_2} \vee x_3 \cdots \vee x_n, \\ g_2(\tilde{x}) = \overline{x_1 \vee x_2} \vee x_3 \vee \cdots \vee x_n \vee x_1 = x_1 \vee \overline{x_2} \vee x_3 \vee \cdots \vee x_n, \\ g_3(\tilde{x}) = \overline{x_1 \vee x_2} \vee x_3 \vee \ldots \vee x_n \vee x_2 = \overline{x_1} \vee x_2 \vee x_3 \vee \cdots \vee x_n, \\ g_4(\tilde{x}) = \overline{x_1 \vee x_2} \vee x_3 \vee \ldots \vee x_n \vee x_1 \vee x_2 = 1. \end{array}$$

Каждая из последних четырёх функций отличается от $g(\tilde{x})$. Но при наличии двух различных нетривиальных функций неисправностей любой тест для S' содержит не менее двух наборов (это следует, как нетрудно заметить, из нижней оценки длины теста таблицы, см. [3], теорема 21). Отсюда получаем нижнюю оценку $D_{\text{Вых}, \text{ЕДT}}^{\{\vee\}}(x_1 \vee ... \vee x_n) \geqslant 2$. Теорема 6 доказана.

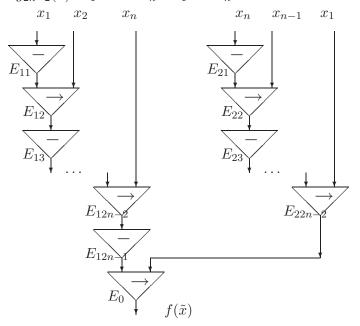
Теперь рассмотрим инверсные неисправности на входах элементов схемы. Обратимся снова к схеме S, изображённой на рис. 1. Пусть V — некоторый вход одного из элементов $E_1 - E_{n-1}$ или левый вход элемента E_n , на который подаётся функция φ (это будет либо некоторая переменная, либо дизъюнкция первых i переменных $x_1 \vee ... \vee x_i$). Этому входу V, как нетрудно заметить, в схеме S соответствует некоторый «симметричный» вход V' одного из элементов $E_1' - E_{n-1}'$ или правый вход элемента E_n , на который подаётся та же функция φ , что и на V. Поэтому при переходе в неисправное состояние входа V (или входа V') на выходе всей схемы будет реализована некоторая дизъюнкция, среди слагаемых которой окажутся две противоположные функции φ и $\overline{\varphi}$, и

функция неисправности окажется тождественной единицей. Но при наличии единственной нетривиальной функции неисправности, очевидно, имеет место

Теорема 7.
$$D_{\text{вх.ЕПТ}}^{\{\vee\}}(x_1 \vee ... \vee x_n) = D_{\text{вх.ЕЛТ}}^{\{\vee\}}(x_1 \vee ... \vee x_n) = 1.$$

3. Единичные тесты для схем в базисе $\{\overline{x}, x \to y\}$

Будем предполагать, что неисправности возможны на выходах элементов, и рассмотрим схему S, реализующую $x_1 \lor ... \lor x_n$ и представленную на рис. 2. В этой схеме элемент « \to » реализует $x \to y$ при подаче x на левый вход и y на правый. В этой схеме неисправности элемента $E_{1,1}$ отвечает функция неисправности $g_1(\tilde{x}) = \overline{x_1} \lor x_2 \lor \cdots \lor x_n \lor x_1 \equiv 1$; неисправности $E_{1,2}$ или $E_{1,3}$ отвечает функция $g_2(\tilde{x}) = \overline{x_1} \lor x_2 \lor x_3 \lor \cdots \lor x_n \lor x_1 \lor x_2 \equiv 1$ и т. д. вплоть до неисправности $E_{1,2n-2}$ или $E_{1,2n-1}$, которой отвечает функция $g_{2n-2}(\tilde{x}) = \overline{x_1} \lor ... \lor x_n \lor x_1 ... \lor x_n \equiv 1$.



Puc. 2

Аналогично, нетрудно видеть, что неисправности каждого из элементов $E_{2,1}, E_{2,2}, ..., E_{2,2n-2}$ также отвечает функция неисправности, тождественно равная единице. Наконец, при неисправности выходного элемента E_0 получаем функцию неисправности $g_0 = \overline{f}$. Исходная функция $f = x_1 \vee ... \vee x_n$ на нулевом наборе $\tilde{0}$ принимает значение 0, а функции 1

и \overline{f} на этом наборе принимают значение 1. Следовательно, имеет место

Теорема 8.
$$D_{\text{ВЫХ,ЕПТ}}^{\{\bar{\ },\to\}}(x_1\vee\ldots\vee x_n)=1.$$

Для единичных диагностических тестов справедлива

Теорема 9.
$$D_{\mathrm{BMX},\mathrm{EДT}}^{\{\bar{-},\to\}}(x_1\vee\ldots\vee x_n)=2.$$

Доказательство. Выше было показано, что для представленной на рис. 2 схемы S возможны лишь две функции неисправности: 1 и \overline{f} . Очевидно, что в этом случае два набора $\tilde{0}$ и $\tilde{1}$ составляют единичный диагностический тест. Отсюда получаем верхнюю оценку

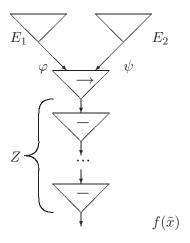
$$D_{\text{BMX}, \text{EДT}}^{\{\bar{}, \to \}}(x_1 \vee ... \vee x_n) \leqslant 2.$$

Для получения нижней оценки $D_{\text{Вых}, \text{ЕДТ}}^{\{\neg,\rightarrow\}}(x_1\vee\ldots\vee x_n)\geqslant 2$ с учётом теоремы 21 из [3] достаточно убедиться в том, что для любой схемы над базисом $\{\overline{x},x\rightarrow y\}$, реализующей $f=x_1\vee\ldots\vee x_n$, существуют по крайней мере две различные нетривиальные функции неисправности. В качестве одной из таких функций для любой схемы S, реализующей f, будет \overline{f} , которая, очевидно, будет реализована при переходе в неисправное состояние выходного элемента схемы.

В схеме S, реализующей f, выделим нижнюю часть S^* , представленную на рис. 3 (инверторы из цепочки Z и один из элементов E_1 и E_2 , вообще говоря, могут и отсутствовать). Рассмотрим два случая: а) в Z имеется нечётное число инверторов, б) в Z имеется чётное число инверторов.

В случае а) на выходе схемы реализуется функция $\varphi\&\overline{\psi}$ и должны выполняться соотношения $\varphi(\tilde{x}) \geqslant x_1 \lor ... \lor x_n$ и $\overline{\psi}(\tilde{x}) \geqslant x_1 \lor ... \lor x_n$, из которых следует, что $\varphi \in \{1,f\}$, $\overline{\psi} \in \{1,f\}$. В случае $\varphi = \overline{\psi} = 1$ на выходе исправной схемы реализуется константа 1, а это исключается. В случае $\varphi = \overline{\psi} = x_1 \lor ... \lor x_n$ при неисправности элемента E_1 на выходе схемы будет реализована константа 0. Пусть $\varphi = 1$, а $\overline{\psi} = x_1 \lor ... \lor x_n$ (случай $\overline{\psi} = 1$, $\varphi = x_1 \lor ... \lor x_n$ рассматривается аналогично). В этом случае при неисправности элемента E_1 опять же будет реализована константа 0.

В случае б) схема S реализует функцию $\psi \vee \overline{\varphi}$ и должны выполняться соотношения $\psi(\tilde{x}) \leqslant x_1 \vee ... \vee x_n$ и $\overline{\varphi}(\tilde{x}) \leqslant x_1 \vee ... \vee x_n$. Предположим, что ψ совпадает с некоторой переменной, например, $\psi(\tilde{x}) = x_1$. Тогда $\overline{\varphi} \in \{x_2 \vee ... \vee x_n, x_1 \vee x_2 \vee ... \vee x_n\}$ и при неисправности элемента E_1 получим нетривиальную функцию неисправности $g = x_1 \vee \overline{x_2} \& ... \& \overline{x_n}$, отличную от \overline{f} .



Puc. 3

Далее считаем, что ψ не является переменной. Если $\psi = x_1 \vee ... \vee x_n$, то либо $\overline{\varphi}(\tilde{x}) = x_1 \vee ... \vee x_n$, либо $\overline{\varphi}(\tilde{x}) = 0$, либо $\overline{\varphi}(\tilde{0}) = 0$ и $\overline{\varphi}(\tilde{\sigma}) = 0$, где $\tilde{\sigma} \neq \tilde{0}$. При неисправности E_1 в первых двух случаях получаем функцию неисправности g, тождественно равную единице, а в третьем случае $g = \varphi \vee \psi$. Следовательно, $g(\tilde{0}) = g(\tilde{\sigma}) = 1$ и $g \notin \{f, \overline{f}\}$.

Пусть теперь $\psi(\tilde{x}) \neq x_1 \vee ... \vee x_n$ (кроме того, напомним, что $\psi(\tilde{x}) \leqslant x_1 \vee ... \vee x_n$). В этом случае $\psi(\tilde{0}) = 0$ и $\psi(\tilde{\sigma}) = 0$ для некоторого отличного от $\tilde{0}$ набора $\tilde{\sigma}$. При неисправности E_2 получим функцию неисправности $g = \overline{\varphi} \vee \overline{\psi}$ такую, что $g(\tilde{0}) = g(\tilde{\sigma}) = 1$ и $g \notin \{f, \overline{f}\}$. Теорема 9 доказана.

Рассмотрим инверсные неисправности на входах элементов. В этом случае нетрудно убедиться (как и в случае неисправности на входах элементов схем в базисе $\{\lor\}$), что для схемы, изображённой на рис. 2, возможна единственная нетривиальная функция неисправности — константа 1; в качестве единичного диагностического (а значит, и проверяющего) теста можно взять набор $\tilde{0}$. Отсюда следует

Теорема 10.
$$D_{\mathrm{BX},\mathrm{E\Pi T}}^{\{\bar{\ },\to\}}(x_1\vee\ldots\vee x_n)=D_{\mathrm{BX},\mathrm{EДT}}^{\{\bar{\ },\to\}}(x_1\vee\ldots\vee x_n)=1.$$

ЛИТЕРАТУРА

- 1. **Лупанов О. Б.** Асимптотические оценки сложности управляющих систем. М.: Изд-во МГУ, 1984.
- 2. Редькин Н. П. Надежность и диагностика схем. М.: Изд-во МГУ, 1992.
- **3. Редькин Н. П.** Дискретная математика. М.: Изд-во ЦПИ при механикоматематическом факультете МГУ, 2007.

4. Яблонский С. В. Некоторые вопросы надежности и контроля управляющих систем // Математические вопросы кибернетики. Вып. 1. М.: Физматлит, 1988. С. 5–25.

Адрес автора:

Статья поступила 30 января 2008 г.

МГУ, мех.-мат. факультет, Воробьёвы горы, 119992 Москва, Россия. E-mail: azjnja@mail.ru