УДК 519.865.3

РАВНОВЕСИЯ В МНОГОПЕРИОДНОЙ МОДЕЛИ ЭКОНОМИКИ С КРАТКОСРОЧНЫМ ПЛАНИРОВАНИЕМ*)

А. В. Сидоров

Аннотация. Исследуется многопериодная модель экономики с производством типа Эрроу — Дебре, в которой дополнительно допускается возможность потребительского инвестирования в производственный сектор, а также осуществления кредитных операций между потребителями на основе безарбитражной процентной ставки. Основным результатом является доказательство теоремы существования равновесия в многопериодной модели с близоруким планированием потребления, производственной и инвестиционной деятельности.

Ключевые слова: модель Эрроу — Дебре, конкурентное равновесие, процентная ставка, близорукое поведение.

Введение

Настоящая статья продолжает исследования, начатые в [4], где рассмотрена некоторая модификация модели Эрроу — Дебре, позволяющая учесть инвестиционную деятельность участников потребительского сектора. Напомним, что классическая модель Эрроу — Дебре задаётся следующим набором параметров:

$$\mathcal{E} = \langle N, M, \{X_i, \succeq_i, \boldsymbol{\omega}^i\}_{i \in N}, \{Y_i\}_{j \in M}, \{\theta_{ij}\}_{i \in N, j \in M} \rangle, \tag{1}$$

где N — множество потребителей, X_i — потребительские множества с заданными на них отношениями предпочтения \succcurlyeq_i , ω^i — индивидуальные начальные запасы потребителей, M — множество фирм, Y_j — технологические множества, θ_{ij} — доля участия потребителя $i \in N$ в доходе фирмы $j \in M$. При этом величины θ_{ij} заданы экзогенно, т. е. определены в некоторой предыстории и уже не могут быть изменены самим владельцем этих активов (см. [3, § 16.1]). В упомянутой выше работе [4] модель Эрроу — Дебре была модифицирована таким образом, что соответствующая прибавка к доходу от участия в прибыли производственного сектора

^{*)}Работа выполнена при поддержке гранта № НШ-4113.2008.6.

получалась в результате инвестиционных усилий в предыдущем периоде. При этом решение о величине потребительского дохода, инвестируемого в производство, принималось самим потребителем, исходя из его собственных представлений об относительной ценности потребляемых благ в настоящем и будущем (дисконтирование полезности). В качестве основного результата была доказана теорема существования равновесия в однопериодном случае. Результат настоящей работы является обобщением указанной теоремы на многопериодный случай.

В силу несомненной тематической связанности этих лвух работ часть результатов, относящихся к однопериодному случаю, без усилий переносится на многопериодную модель. Это касается, главным образом, ряда промежуточных результатов, которые носят «локальный» характер, т. е. относятся к отдельному временному интервалу. Использование этих результатов, не требующих никаких текстуальных изменений при обобщении на многопериодный случай, в настоящей работе сводится к ссылке на соответствующие «однопериодные» аналоги из [4]. Более детальное изложение касается основного качественного отличия многопериолной модели от её однопериодного «прародителя». В однопериодной модели планирование производственной деятельности и потребительской активности с необходимостью охватывало весь временной период функционирования экономики. При этом и потребительский, и производственный планы являлись по построению решениями соответствующих оптимизационных задач. В случае многопериодной модели допущение о том, что производитель и потребитель определяют оптимальные планы на весь многопериодный интервал функционирования, представляется чрезмерным. Более правдоподобным является представление о «близоруком» поведении, т. е. с опорой на текущую конъюнктуру и ближайшие перспективы.

1. Многопериодная модель экономики с инвестированием

1.1. Производственный сектор. В отличие от статической модели Эрроу — Дебре процессы производства и потребления предполагаются развертывающимися в дискретном времени $t \in \{0, 1, ..., T\}$. Пусть $L = \{1, ..., l\}$ — ассортимент всех имеющихся в экономике товаров. Номинально один и тот же товар $k \in L$ в каждом периоде t может иметь различную цену p_k^t и поэтому с экономической точки зрения должен рассматриваться как совокупность различных товаров, т. е. размерность пространства товаров будет равна $(T+1) \cdot l$. Здесь следует подчеркнуть, что каждый временной период t имеет некоторую длительность, которую мы будем считать равной единице. Это обстоятельство является

существенным для моделирования производственного процесса, который совершается не мгновенно, а в течение всего периода t, причём производственные издержки относятся к началу периода, а получение и реализация конечной продукции — к его концу, т. е. прибыль инвесторов и произведённые товары становятся доступными только в следующем периоде t+1. В частности, реализация конечной продукции будет производиться уже по ценам \mathbf{p}^{t+1} . В связи с этим технологическое множество Y^t в каждом периоде t рассматривается как подмножество в $\left(-\mathbb{R}_+^L\right) \times \mathbb{R}_+^L$, где $\mathbb{R}_+^L = \left\{\mathbf{y} \in \mathbb{R}^L \mid \mathbf{y} \geqslant 0\right\}$, и каждый элемент множества Y^t может быть представлен в виде $\mathbf{y} = (-\mathbf{y}^-, \mathbf{y}^+)$, где $\mathbf{y}^\pm \geqslant 0^*$. В этом случае \mathbf{y}^- есть вектор затрати, указывающий на ассортимент и количество затрачиваемого сырья, а \mathbf{y}^+ — вектор выпуска, указывающий на ассортимент и количество выпускаемой конечной продукции. Элементы множества Y^t в дальнейшем будем называть mexhonoruxmu.

Прежде чем сформулировать предположения, налагаемые на технологические множества, введём некоторые обозначения и понятия. По существу они идентичны соответствующим понятиям из [4], за исключением того, что теперь в обозначениях следует учитывать многопериодность.

Определение 1. Границей эффективности технологического множества Y^t называется множество

$$\operatorname{Eff}(Y^{t}) = \{\overline{\mathbf{y}} \in Y^{t} \mid (\forall \mathbf{y} > \overline{\mathbf{y}}) \ \mathbf{y} \notin Y^{t}\}.$$

Определение 2. Пусть $\mathbf{y} \in Y^t$ — некоторая ненулевая допустимая технология такая, что луч $\Lambda(\mathbf{y}) = \mathbb{R}_+ \cdot \mathbf{y}$ содержится в Y^t . В этом случае будем говорить, что технология \mathbf{y} допускает постоянную отдачу от увеличения масштаба.

С содержательной точки зрения это означает, что при любом $\lambda \geqslant 0$ пропорциональное увеличение затрат сырья в λ раз приведёт к увеличению выпуска конечной продукции как минимум в той же пропорции.

Пусть теперь $(\mathbf{p}^t, \mathbf{p}^{t+1}) \in \mathbb{R}_{++}^L \times \mathbb{R}_{++}^L$ — вектор, отображающий одновременно текущие цены \mathbf{p}^t и цены следующего периода \mathbf{p}^{t+1} . Тогда для любой допустимой технологии $\mathbf{y} \in Y^t$ скалярное произведение $\Pi(\mathbf{p}, \mathbf{y}) :=$

^{*}Здесь и далее для векторных неравенств будут использоваться следующие обозначения: $\mathbf{y} \geqslant \mathbf{z}$ означает, что $y_k \geqslant z_k$ для всех k, $\mathbf{y} \gg \mathbf{z}$ означает, что $y_k > z_k$ для всех k, наконец $\mathbf{y} > \mathbf{z}$ означает, что $\mathbf{y} \geqslant \mathbf{z}$ и $\mathbf{y} \neq \mathbf{z}$. Кроме того, для множества всех строго положительных по всем компонентам векторов будет использоваться обозначение $\mathbb{R}_{++}^L = \{\mathbf{y} \in \mathbb{R}^L \mid \mathbf{y} \gg 0\}$.

 $\mathbf{p} \cdot \mathbf{y} = \mathbf{p}^{t+1} \cdot \mathbf{y}^+ - \mathbf{p}^t \cdot \mathbf{y}^-$ выражает чистую прибыль (разность выручки и издержек) при использовании технологии \mathbf{y} .

Определение 3. Технология $\mathbf{y} \in Y^t$ называется \mathbf{p} -рентабельной, если $\Pi(\mathbf{p}, \mathbf{y}) \geqslant 0$, и \mathbf{p} -оптимальной, если $\Pi(\mathbf{p}, \mathbf{y}) \geqslant \Pi(\mathbf{p}, \mathbf{z})$ для любого $\mathbf{z} \in Y^t$.

Теперь сформулируем основные предположения, налагаемые на технологические множества.

- Y1. Множество Y^t выпукло и замкнуто.
- Y2. Множество Y^t удовлетворяет условию свободного расходования в $(-\mathbb{R}_+^L) \times \mathbb{R}_+^L$: если $\mathbf{y} \in Y^t$ и $\mathbf{y}' \in (-\mathbb{R}_+^L) \times \mathbb{R}_+^L$ таково, что $\mathbf{y}' \leqslant \mathbf{y}$, то $\mathbf{y}' \in Y^t$.
- Y3. Множество Y^t удовлетворяет условию отсутствия «рога изобилия»: $0 \in \text{Eff}(Y^t).$
- Y4. Множество Y^t удовлетворяет условию убывания отдачи от увеличения масштаба: для любой технологии $\mathbf{y} \in Y^t$, допускающей постоянную отдачу от увеличения масштаба, выполнено $\mathbf{y}^+ = 0$.
- Y5. Множество Y^t удовлетворяет условию строгой выпуклости: для любых $\mathbf{y}, \mathbf{y}' \in \text{Eff}(Y^t), \mathbf{y} \neq \mathbf{y}',$ и $\lambda \in (0,1)$ выполнено условие $\lambda \mathbf{y} + (1 \lambda)\mathbf{y}' \notin \text{Eff}(Y^t)$.

Предположения Y1–Y3 являются стандартными для моделей типа Эрроу — Дебре. Условие Y4 означает, что не существует продуктивных технологий, допускающих постоянную отдачу от увеличения масштаба. Условие строгой выпуклости, вообще говоря, заранее предполагает выпуклость множества Y^t и дополнительно гарантирует отсутствие линейных участков на границе эффективности, что является условием однозначной разрешимости задачи производителя. Более подробный анализ этих предположений можно найти в [4].

Лемма 1. Пусть выполнены условия Y1–Y4 и $K \subset \mathbb{R}^L_{++} \times \mathbb{R}^L_{++}$ — произвольный компакт. Тогда объединение множеств **p**-рентабельных технологий в Y^t по всем $(\mathbf{p}^t, \mathbf{p}^{t+1}) \in K$ является ограниченным множеством. В частности, если $K = \{(\mathbf{p}^t, \mathbf{p}^{t+1})\}$ одноэлементно, то множество всех **p**-рентабельных технологий является непустым выпуклым компактным множеством.

Лемма 2. Пусть выполнены условия Y1–Y4. Тогда для любого $(\mathbf{p}^t, \mathbf{p}^{t+1}) \in \mathbb{R}^{2L}_{++}$ множество \mathbf{p} -оптимальных технологий $S^t(\mathbf{p}^t, \mathbf{p}^{t+1})$ является непустым выпуклым компактным подмножеством границы эф-

фективности $\mathrm{Eff}(Y^t)$, точечно-множественное отображение

$$S^t: (\mathbf{p}^t, \mathbf{p}^{t+1}) \mapsto S^t(\mathbf{p}^t, \mathbf{p}^{t+1})$$

имеет замкнутый график во всей области определения и образ $S^t(K)$ для любого компактного подмножества $K \subset \mathbb{R}^{2L}_{++}$ является ограниченным множеством. Если дополнительно выполнено условие Y5, то

$$S^{t}(\mathbf{p}^{t}, \mathbf{p}^{t+1}) = \{\mathbf{y}^{t}(\mathbf{p}^{t}, \mathbf{p}^{t+1})\}\$$

— одноэлементное множество и функция $\mathbf{y}^t: \mathbb{R}^{2L}_{++} \to Y^t$ является непрерывной.

Доказательства этих утверждений в силу их локального характера полностью идентичны доказательствам лемм 1 и 2 из [4].

Предположим теперь, что фирмы образуют конечное множество $M=\{1,\ldots,m\}$ и производственные возможности каждой фирмы $j\in M$ в периоде $t\in\{0,\ldots,T-1\}$ характеризуются технологическим множеством Y_j^t , удовлетворяющим условиям Y1–Y5. Тогда в силу предыдущей леммы определены непрерывные функции $\mathbf{y}_j^t(\mathbf{p}^t,\mathbf{p}^{t+1})$, характеризующие оптимальные производственные планы фирмы $j\in M$ в периоде t при ценах $(\mathbf{p}^t,\mathbf{p}^{t+1})$. Определим функцию совокупного производственного предложения в том же периоде

$$\mathbf{y}^{t}(\mathbf{p}^{t}, \mathbf{p}^{t+1}) = \sum_{j \in M} \mathbf{y}_{j}^{t}(\mathbf{p}^{t}, \mathbf{p}^{t+1}).$$

Тогда функции

$$\mathbf{y}^{t-}(\mathbf{p}^t, \mathbf{p}^{t+1}) = \sum_{j \in M} \mathbf{y}_j^{t-}(\mathbf{p}^t, \mathbf{p}^{t+1}), \quad \mathbf{y}^{t+}(\mathbf{p}^t, \mathbf{p}^{t+1}) = \sum_{j \in M} \mathbf{y}_j^{t+}(\mathbf{p}^t, \mathbf{p}^{t+1})$$

характеризуют совокупную потребность в сырье и совокупный выпуск соответственно.

Заметим, что в силу условия Y3 равенство $\mathbf{y}^t(\mathbf{p}^t,\mathbf{p}^{t+1})=0$ имеет место тогда и только тогда, когда $\mathbf{y}^{t-}(\mathbf{p}^t,\mathbf{p}^{t+1})=0$, что, в свою очередь, эквивалентно выполнению равенства $\mathbf{y}_j^{t-}(\mathbf{p}^t,\mathbf{p}^{t+1})=0$ для всех $j\in M$. Используя это обстоятельство, для каждого $t\in\{0,1,\ldots,T-1\}$ определим следующую функцию

$$r^{t+1}(\mathbf{p}^t, \mathbf{p}^{t+1}) = \begin{cases} \frac{(\mathbf{p}^t, \mathbf{p}^{t+1}) \cdot \mathbf{y}^t (\mathbf{p}^t, \mathbf{p}^{t+1})}{\mathbf{p}^t \cdot \mathbf{y}^{t-} (\mathbf{p}^t, \mathbf{p}^{t+1})}, & \text{если } \mathbf{y}^t (\mathbf{p}^t, \mathbf{p}^{t+1}) \neq 0, \\ 0, & \text{если } \mathbf{y}^{t-} (\mathbf{p}^t, \mathbf{p}^{t+1}) = 0, \end{cases}$$

значение которой можно интерпретировать как среднюю доходность всего производственного сектора при ценах $(\mathbf{p}^t, \mathbf{p}^{t+1})$, т. е. величину совокупной чистой прибыли, отнесенной к совокупным затратам.

Лемма 3. Функция
$$r^{t+1}(\mathbf{p}^t, \mathbf{p}^{t+1})$$
 непрерывна всюду в \mathbb{R}^{2L}_{++} .

Доказательство этого утверждения для случая T=1 содержится в [4, лемма 3]. В силу своего локального характера доказательство общего утверждения идентично вышеупомянутому с точностью до замены в обозначениях $(\mathbf{p}^0, \mathbf{p}^1)$ на $(\mathbf{p}^t, \mathbf{p}^{t+1})$.

Пусть теперь $\mathbf{p}=(\mathbf{p}^0,\mathbf{p}^1,\dots,\mathbf{p}^T)\in\mathbb{R}_{++}^{(T+1)L}$ — произвольная траектория цен на временном интервале $[0,1,\dots,T]$. Заметим, что определённые выше функции $\mathbf{y}^t,\mathbf{r}^{t+1}$ зависели только от текущих цен \mathbf{p}^t и следующих цен \mathbf{p}^{t+1} , подобная ситуация будет воспроизводиться и в других локальных конструкциях, поэтому с целью уменьшения объёма дальнейших выкладок в качестве аргумента этих функций будем использовать всю траекторию цен \mathbf{p} , подразумевая, что фактически они зависят только от «своих» цен.

В силу сформулированных выше утверждений для всех $t \in \{1, \dots, T\}$ определены величины $R_t(\mathbf{p}) = 1 + r^t(\mathbf{p})$, $R_{[t]}(\mathbf{p}) = \prod_{s=1}^t R_s(\mathbf{p})$ и вектор

$$PV(\mathbf{p}) = \left(\mathbf{p}^0, \frac{\mathbf{p}^1}{R_1(\mathbf{p})}, \dots, \frac{\mathbf{p}^t}{R_{[t]}(\mathbf{p})}, \dots, \frac{\mathbf{p}^T}{R_{[T]}(\mathbf{p})}\right).$$

Кроме того, вектор cosokynhozo npoussodcmsehhozo npedложения на временном интервале $[0, \ldots, T]$ определяется следующим образом:

$$\mathbf{y}(\mathbf{p}) = (-\mathbf{y}^{0-}(\mathbf{p}), \dots, \mathbf{y}^{(t-1)+}(\mathbf{p}) - \mathbf{y}^{t-}(\mathbf{p}), \dots, \mathbf{y}^{(T-1)+}(\mathbf{p})) \in \mathbb{R}_{++}^{(T+1)L}.$$

Содержательный смысл этих величин будет обсуждаться ниже при описании потребительского сектора, а пока отметим некоторые их свойства.

Замечание 1. Функции

$$R_t: \mathbb{R}_{++}^{(T+1)L} \to [1, +\infty), \ R_{[t]}: \mathbb{R}_{++}^{(T+1)L} \to [1, +\infty)$$

определены и непрерывны всюду в $\mathbb{R}_{++}^{(T+1)L}$. Вектор-функции

$$\mathbf{y}: \mathbb{R}_{++}^{(T+1)L} \to \mathbb{R}^{(T+1)L}, \ PV: \mathbb{R}_{++}^{(T+1)L} \to \mathbb{R}_{++}^{(T+1)L}$$

определены и непрерывны всюду в $\mathbb{R}_{++}^{(T+1)L}$ и удовлетворяют тождеству $PV(\mathbf{p})\cdot\mathbf{y}(\mathbf{p})\equiv 0$ для всех $\mathbf{p}\in\mathbb{R}_{++}^{(T+1)L}$.

В доказательстве нуждается только последнее тождество, остальные утверждения тривиально следуют из леммы 3 и определений соответствующих объектов. Действительно, после приведения подобных слагаемых получаем

$$PV(\mathbf{p}) \cdot \mathbf{y}(\mathbf{p}) = \sum_{t=0}^{T-1} \left(\frac{\mathbf{p}^{t+1}}{R_{[t+1]}(\mathbf{p})} \cdot \mathbf{y}^{t+}(\mathbf{p}) - \frac{\mathbf{p}^t}{R_{[t]}(\mathbf{p})} \cdot \mathbf{y}^{t-}(\mathbf{p}) \right)$$
$$= \sum_{t=0}^{T-1} \frac{1}{R_{[t]}(\mathbf{p})} \left(\frac{\mathbf{p}^{t+1} \cdot \mathbf{y}^{t+}(\mathbf{p})}{R_{t+1}(\mathbf{p})} - \mathbf{p}^t \cdot \mathbf{y}^{t-}(\mathbf{p}) \right).$$

Покажем, что для всех $t \in \{0, \dots, T-1\}$ имеют место равенства

$$\left(\frac{\mathbf{p}^{t+1} \cdot \mathbf{y}^{t+}(\mathbf{p})}{R_{t+1}(\mathbf{p})} - \mathbf{p}^t \cdot \mathbf{y}^{t-}(\mathbf{p})\right) = 0.$$

Если $\mathbf{y}^t(\mathbf{p}) = 0$, то это очевидно так. Пусть $\mathbf{y}^t(\mathbf{p}) \neq 0$, тогда из определения имеем

$$R_{t+1}(\mathbf{p}) = 1 + \frac{(\mathbf{p}^t, \mathbf{p}^{t+1}) \cdot \mathbf{y}^t(\mathbf{p})}{\mathbf{p}^t \cdot \mathbf{y}^{t-}(\mathbf{p})} = \frac{(\mathbf{p}^t, \mathbf{p}^{t+1}) \cdot \mathbf{y}^t(\mathbf{p}) + \mathbf{p}^t \cdot \mathbf{y}^{t-}(\mathbf{p})}{\mathbf{p}^t \cdot \mathbf{y}^{t-}(\mathbf{p})} = \frac{\mathbf{p}^{t+1} \cdot \mathbf{y}^{t+}(\mathbf{p})}{\mathbf{p}^t \cdot \mathbf{y}^{t-}(\mathbf{p})},$$

отсюда легко следует требуемое равенство.

1.2. Потребительский сектор. В потребительском секторе экономики действуют экономические агенты, образующие конечное множество $N=\{1,\ldots,n\}$, и каждый участник $i\in N$ в период t располагает вектором начальных запасов $\boldsymbol{\omega}^{i,t}\in\mathbb{R}^L_+$. Потребительские предпочтения в периоде t учитывают не только текущее потребление \mathbf{x}^t , но и потребительский план для следующего периода, который мы будем обозначать через \mathbf{z}^t , поскольку, во-первых, формирование этого плана относится к периоду t, а во-вторых, этот план может отличаться от реального потребления \mathbf{x}^{t+1} в периоде t+1, поскольку потребитель вправе скорректировать свои планы с учетом реалий нового периода.

Перейдём к описанию бюджетных ограничений при заданных ценах $(\mathbf{p}^t, \mathbf{p}^{t+1}) \in \mathbb{R}^{2L}_{++}$. В отличие от классической модели Эрроу — Дебре (1) каждый потребитель в период t может капитализировать некоторую часть d_i^t своего дохода. При этом отрицательные значения d_i^t интерпретируются как заём в размере $|d_i^t|$. В следующем временном периоде

t+1 на инвестированные суммы (суммы займа) происходит начисление процентов в соответствии с процентной ставкой r^{t+1} , единой для всех типов финансовых операций. Вопрос о том, как именно определяется процентная ставка r^{t+1} , будет рассмотрен ниже. В данный момент как ставка r^{t+1} , так и цены $(\mathbf{p}^t, \mathbf{p}^{t+1})$ рассматриваются потребителем как экзогенные параметры. Тем самым величины дохода, направляемые на потребление в периоды t и t+1, составляют $\mathbf{p}^t \cdot \boldsymbol{\omega}^{i,t} + R_t d_i^{t-1} - d_i^t$ и $\mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1} \cdot d_i^t$ соответственно, где $R_t = (1+r^t)$ — множитель приращения процентов в периоде t. Поэтому бюджетное множество потребителя i в периоде t при ценах $(\mathbf{p}^t, \mathbf{p}^{t+1}) \in \mathbb{R}^{2L}_{++}$, текущей процентной ставке r^{t+1} и «инвестиционной предыстории» в виде предыдущей инвестиции d_i^{t-1} под проценты r^t определяется следующим образом:

$$B_i^t(\mathbf{p}, R, d_i) = \{ (\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \in \mathbb{R}_+^{2L} \mid \exists d_i^t \in \mathbb{R} : \mathbf{p}^t \cdot \mathbf{x}^{i,t} \leqslant \mathbf{p}^t \cdot \boldsymbol{\omega}^{i,r} + R_t d_i^{t-1} - d_i^t, \ \mathbf{p}^{t+1} \cdot \mathbf{z}^{i,t} \leqslant \mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1} \cdot d_i^t \}.$$

Здесь мы использовали сокращённую запись аргумента для B_i^t , поскольку параметры, от которых имеется фактическая зависимость бюджетного множества, однозначно восстанавливаются по номеру временно́го интервала t.

Заметим, что первое неравенство в данном определении можно заменить равенством, при этом бюджетное множество останется неизменным. Действительно, предположим, что $(\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \in B_i^t(\mathbf{p}, R, d_i)$, т. е. выполнены неравенства

$$\mathbf{p}^t \cdot \mathbf{x}^{i,t} \leqslant \mathbf{p}^t \cdot \boldsymbol{\omega}^{i,r} + R_t d_i^{t-1} - d_i^t, \quad \mathbf{p}^{t+1} \cdot \mathbf{z}^{i,t} \leqslant \mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1} \cdot d_i^t.$$

Пусть $\widetilde{d}_i^t = R_t d_i^{t-1} + \mathbf{p}^t \cdot \boldsymbol{\omega}^{i,r} - \mathbf{p}^t \cdot \mathbf{x}^{i,t}$. Тогда имеет место равенство

$$\mathbf{p}^t \cdot \mathbf{x}^{i,t} = \mathbf{p}^t \cdot \boldsymbol{\omega}^{i,r} + R_t d_i^{t-1} - \widetilde{d}_i^t.$$

При этом в силу неравенства $d_i^t \leqslant \widetilde{d}_i^t$ и положительности R_{t+1} выполнено $\mathbf{p}^{t+1} \cdot \mathbf{z}^{i,t} \leqslant \mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1} \cdot d_i^t \leqslant \mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1} \cdot \widetilde{d}_i^t$, что и требовалось показать.

Таким образом,

$$B_i^t(\mathbf{p}, R, d_i) = \left\{ (\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \in \mathbb{R}_+^{2L} \mid \exists d_i^t \in \mathbb{R} : \mathbf{p}^t \cdot \mathbf{x}^{i,t} = \mathbf{p}^t \cdot \boldsymbol{\omega}^{i,r} + R_t d_i^{t-1} - d_i^t, \mathbf{p}^{t+1} \cdot \mathbf{z}^{i,t} \leqslant \mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1} \cdot d_i^t \right\}.$$
(2)

В дальнейшем мы будем использовать (2) как основное определение бюджетного множества.

Перейдём теперь к описанию потребительских предпочтений агента $i \in N$. Так же, как и в [4], полагаем, что они заданы полными транзитивными бинарными отношениями \succcurlyeq_i^t на множестве \mathbb{R}^{2L}_+ , т. е. потребитель в момент времени t сравнивает между собой потребительские планы, включающие в себя не только текущее потребление $\mathbf{x}^{i,t}$, но и запланированное на один период вперёд $\mathbf{z}^{i,t}$. Подобное «близорукое» поведение является наиболее правдоподобным для динамически развивающейся экономики, поскольку достоверный прогноз о достаточно отдалённых моментах времени, как правило, отсутствует. Исходя из этого, потребитель осуществляет выбор в этом бюджетном множестве наиболее предпочтительных (на ближайшую перспективу) элементов, формируя множество спроса

$$D_i^t(\mathbf{p}, R, d_i) = \{ (\bar{\mathbf{x}}^{i,t}, \bar{\mathbf{z}}^{i,t}) \mid (\bar{\mathbf{x}}^{i,t}, \bar{\mathbf{z}}^{i,t}) \in B_i^t(\mathbf{p}, R, d_i), \\ \forall (\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \in B_i^t(\mathbf{p}^t, R, d) : (\bar{\mathbf{x}}^{i,t}, \bar{\mathbf{z}}^{i,t}) \succcurlyeq_i^t (\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \}.$$

В качестве «краевых условий» естественно полагать, что $d_i^0 \equiv 0$, так как у первого периода нет «предыстории», кроме того, предполагая в рамках настоящей статьи ограниченность функционирования экономики временем T, процесс принятия решений следует ограничить периодом T-1, в частности, реальный объём потребления $\mathbf{x}^{i,T}$ будет совпадать с запланированным в предыдущий период $\mathbf{z}^{i,T-1}$.

Отметим некоторые черты изучаемой модели, отличающие её от других многопериодных моделей экономики, среди которых наиболее известны модели с перекрывающимися поколениями (см., например, [1, гл. 5)). В этих моделях функционирование экономики происходит на неограниченном временном интервале, т. е. в наших обозначениях T= $+\infty$, в то время как период функционирования каждого индивида ограничен, и поэтому множество экономических агентов состоит из бесконечного числа сменяющих друг друга поколений, при этом некоторое время, как следует из названия модели, сотрудничающих друг с другом. Традипионно потребительский план каждого участника поколения (а иногда и всего поколения в целом) определяется как решение одной экстремальной задачи на весь период жизни его поколения, при этом каждое новое поколение начинает свою деятельность «с чистого листа». В отличие от этого в изучаемой модели поколения потребителей являются «долгоживущими», динамически корректирующими свои потребительские планы в соответствии с изменяющимися внешними обстоятельствами. В силу этого период функционирования системы приходится также считать конечным, что является недостатком в сравнении с моделью с перекрывающимися поколениями. Тем не менее изучаемая в данной работе модель может быть обобщена на случай бесконечного временного интервала, если рассматривать поколения потребителей, не перекрывающиеся, а *наследующие* друг другу.

Ниже будет предполагаться, что все потребительские отношения предпочтения удовлетворяют следующим условиям.

- U1. Отношения предпочтения \succcurlyeq_i^t непрерывны на $\mathbb{R}_+^L \times \mathbb{R}_+^L$, т. е. множества $\{\mathbf{y} \in \mathbb{R}_+^L \times \mathbb{R}_+^L \mid \mathbf{y} \succcurlyeq_i^t \mathbf{x}\}$ и $\{\mathbf{y} \in \mathbb{R}_+^L \times \mathbb{R}_+^L \mid \mathbf{x} \succcurlyeq_i^t \mathbf{y}\}$ замкнуты для любого $\mathbf{x} \in \mathbb{R}_+^L \times \mathbb{R}_+^L$.
- U2. Отношения предпочтения \succeq_i^t строго выпуклы, т. е. для любых $\mathbf{x}, \mathbf{y} \in \mathbb{R}_+^L \times \mathbb{R}_+^L$ таких, что $\mathbf{x} \succeq_i^t \mathbf{y}$, и любого $\lambda \in (0,1)$ выполнено $\lambda \mathbf{x} + (1 \lambda)\mathbf{y} \succeq_i^t \mathbf{y}$.
- U3. Отношения предпочтения \succcurlyeq_i^t локально ненасыщаемы вверх, т. е. для любого $\mathbf{x} \in \mathbb{R}_+^L \times \mathbb{R}_+^L$ найдутся $\mathbf{v}, \mathbf{w} \in \mathbb{R}_+^L$ такие, что $\mathbf{x} + (\mathbf{v}, 0) \succ_i^t \mathbf{x}, \mathbf{x} + (0, \mathbf{w}) \succ_i^t \mathbf{x}$.

Из приведённого выше описания бюджетных множеств и множеств спроса следует, что за исключением начального периода в каждом последующем выбор потребителя не является вполне автономным, поскольку зависит в значительной степени от инвестиционно-потребительской стратегии поведения в предыдущие периоды деятельности. Поэтому объектом исследования будет не столько спрос в отдельные периоды, сколько траектории спроса на всём временном интервале $[0, 1, \ldots, T]$.

1.3. Взаимодействие секторов экономики. Рассмотрим оба сектора экономики в рамках единой системы, связав их с помощью операций кредитования (инвестирования). Начиная с этого момента, будем полагать, что процентная ставка r^{t+1} совпадает с общей доходностью производственного сектора $r^{t+1}(\mathbf{p})$. Более подробное обоснование этого отождествления, так называемого «условия безарбитражности» для безрисковых кредитных операций, можно найти в [4]. Соответственно определения бюджетных множеств и множеств спроса приобретают следующий вид:

$$B_i^t(\mathbf{p}, d_i) = \left\{ (\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \in \mathbb{R}_+^{2L} \mid \exists d_i^t \in \mathbb{R} : \mathbf{p}^t \cdot \mathbf{x}^{i,t} = \mathbf{p}^t \cdot \boldsymbol{\omega}^{i,r} + R_t(\mathbf{p}) d_i^{t-1} - d_i^t, \mathbf{p}^{t+1} \cdot \mathbf{z}^{i,t} \leqslant \mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1}(\mathbf{p}) \cdot d_i^t \right\}, \quad (3)$$

$$D_i^t(\mathbf{p}, d_i) = \{ (\bar{\mathbf{x}}^{i,t}, \bar{\mathbf{z}}^{i,t}) \mid (\bar{\mathbf{x}}^{i,t}, \bar{\mathbf{z}}^{i,t}) \in B_i^t(\mathbf{p}, d_i), \\ \forall (\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \in B_i^t(\mathbf{p}, d_i) : (\bar{\mathbf{x}}^{i,t}, \bar{\mathbf{z}}^{i,t}) \succcurlyeq_i^t (\mathbf{x}^{i,t}, \mathbf{z}^{i,t}) \},$$

в котором по-прежнему прослеживается зависимость от кредитной предыстории.

Введём некоторые вспомогательные конструкции, позволяющие упростить дальнейшее изложение. Пусть $\mathbf{q}=(\mathbf{q}^0,\mathbf{q}^1,\dots,\mathbf{q}^T)\in\mathbb{R}_{++}^{(T+1)L}$ — некоторая траектория цен, $\boldsymbol{\omega}^i=(\boldsymbol{\omega}^{i,0},\dots,\boldsymbol{\omega}^{i,T})\in\mathbb{R}_+^{(T+1)L}$ — «траектория» начальных запасов. Рассмотрим классическое бюджетное множество в модели чистого обмена при ценах \mathbf{q} с начальными запасами $\boldsymbol{\omega}^i$:

$$\widetilde{B}_i(\mathbf{q}) = \{\mathbf{x} \in \mathbb{R}_+^{(T+1)L} \mid \mathbf{q} \cdot \mathbf{x} \leqslant \mathbf{q} \cdot \boldsymbol{\omega}^i \}.$$

Определение 4. Вектор $\mathbf{x} = (\mathbf{x}^0, \mathbf{x}^1, \dots, \mathbf{x}^T) \in \mathbb{R}_+^{(T+1)L}$ называется бюджетно-допустимой траекторией относительно траектории цен \mathbf{q} , если для всех $t \in \{0, \dots, T\}$ выполнено

$$(\mathbf{x}^0,\ldots,\mathbf{x}^t,0,\boldsymbol{\omega}^{i,(t+2)},\ldots,\boldsymbol{\omega}^{i,T})\in\widetilde{B}_i(\mathbf{q}),$$

в частности, при t = T получаем, что $\mathbf{x} \in \widetilde{B}_i(\mathbf{q})$.

Бюджетно-допустимая траектория $\bar{\mathbf{x}}=(\bar{\mathbf{x}}^0,\dots,\bar{\mathbf{x}}^T)$ называется ло-кально-оптимальной относительно \mathbf{q} , если для всех $t\in\{0,\dots,T-2\}$ найдутся $\bar{\mathbf{z}}^t\geqslant 0$ и $\bar{\mathbf{z}}^{T-1}=\bar{\mathbf{x}}^T$ такие, что выполнены следующие условия: для всех векторов $(\mathbf{x}^t,\mathbf{z}^t)\in\mathbb{R}^{2L}_+$, удовлетворяющих условию

$$(\bar{\mathbf{x}}^0, \dots, \bar{\mathbf{x}}^{t-1}, \mathbf{x}^t, \mathbf{z}^t, \boldsymbol{\omega}^{i,t+2}, \dots, \boldsymbol{\omega}^{i,T}) \in \widetilde{B}_i(\mathbf{q}),$$

выполнено $(\bar{\mathbf{x}}^t, \bar{\mathbf{z}}^t) \succcurlyeq_i^t (\mathbf{x}^t, \mathbf{z}^t)$.

Лемма 4. Пусть выполнены предположения U1–U3. Тогда для любого $\mathbf{q} \in \mathbb{R}_{++}^{(T+1)L}$ существует единственная локально-оптимальная траектория $(\bar{\mathbf{x}}^0,\dots,\bar{\mathbf{x}}^T) \in \widetilde{B}_i(\mathbf{q})$, при этом выполнено равенство

$$\mathbf{q} \cdot (\bar{\mathbf{x}}^0, \dots, \bar{\mathbf{x}}^T) = \mathbf{q} \cdot \boldsymbol{\omega}^i.$$

Доказательство. Пусть t=0, рассмотрим множество

$$B_0 = \{ \mathbf{x} \in \widetilde{B}_i(\mathbf{q}) \mid \forall t \geqslant 2 : \mathbf{x}^t = \boldsymbol{\omega}^{i,t} \},$$

которое, очевидно, является непустым выпуклым компактом. Это же верно и для проекции множества B_0 на первые 2l компонент. В силу непрерывности и строгой выпуклости отношения предпочтения \succeq_i^0 существует единственный максимальный элемент $(\bar{\mathbf{x}}^0, \bar{\mathbf{z}}^0)$ в проекции B_0 . Тем самым выполнено условие локальной оптимальности при t=0, причём

в силу единственности максимального элемента вектор $\bar{\mathbf{x}}^0$ является началом любой локально-оптимальной траектории.

Предположим теперь, что для некоторого $\tau \leqslant T-2$ доказано выполнение условий локальной оптимальности для всех $t \leqslant \tau-1$ и, кроме того, доказано, что вектор $(\bar{\mathbf{x}}^0,\dots,\bar{\mathbf{x}}^{\tau-1})$ является общим начальным отрезком для всех локально-оптимальных траекторий. Покажем однозначную продолжаемость этого отрезка на период τ . Рассмотрим множество $B_{\tau} = \{\mathbf{x} \in \widetilde{B}_i(\mathbf{q}) \mid (\forall t \leqslant \tau-1) \, \mathbf{x}^t = \bar{\mathbf{x}}^t \& (\forall t \geqslant \tau+2) \, \mathbf{x}^t = \boldsymbol{\omega}^{i,t} \}$, являющеся непустым выпуклым компактом, и спроектируем его на компоненты, соответствующие периодам τ и $\tau+1$. Элементы этой проекции $(\mathbf{x}^{\tau},\mathbf{z}^{\tau})$ в силу своего определения удовлетворяют условию

$$(\bar{\mathbf{x}}^0,\ldots,\bar{\mathbf{x}}^{\tau-1},\mathbf{x}^{\tau},\mathbf{z}^{\tau},\boldsymbol{\omega}^{i,\tau+2},\ldots,\boldsymbol{\omega}^{i,T})\in \widetilde{B}_i(\mathbf{q}).$$

Как и ранее, в множестве B_{τ} существует единственный максимальный относительно \succcurlyeq_i^t элемент $(\bar{\mathbf{x}}^t, \bar{\mathbf{z}}^t)$. Наконец, проводя аналогичные рассуждения при $\tau = T-1$, мы дополнительно учитываем второе краевое условие $\bar{\mathbf{x}}^T = \bar{\mathbf{z}}^{T-1}$. Таким образом, опираясь только на определение локальной оптимальности и свойства отношений предпочтений, мы построили единственную локально-оптимальную траекторию $(\bar{\mathbf{x}}^0, \dots, \bar{\mathbf{x}}^T)$, при этом тождество Вальраса $\mathbf{q} \cdot (\bar{\mathbf{x}}^0, \dots, \bar{\mathbf{x}}^T) = \mathbf{q} \cdot \boldsymbol{\omega}^i$ является тривиальным следствием локальной ненасыщаемости отношения предпочтения $\boldsymbol{\varsigma}_i^T$. Лемма 4 доказана.

Лемма 5. Пусть $\mathbf{p} = (\mathbf{p}^0, \dots, \mathbf{p}^T) \in \mathbb{R}_{++}^{(T+1)L}$ — произвольная траектория цен, $\mathbf{x} = (\mathbf{x}^0, \dots, \mathbf{x}^T) \in \mathbb{R}_{+}^{(T+1)L}$. Тогда \mathbf{x} — бюджетно-допустимая траектория относительно траектории приведённых цен $PV(\mathbf{p})$ тогда и только тогда, когда для всех $t \in \{0, \dots, T-1\}$ найдутся векторы $\mathbf{z}^t \geqslant 0$, $\mathbf{z}^{T-1} = \mathbf{x}^T$ и числа d_i^{t-1} (при t = 0 полагаем $d_i^{-1} = 0$) такие, что $(\mathbf{x}^t, \mathbf{z}^t) \in B_i^t(\mathbf{p}, d_i)$.

Кроме того, $(\bar{\mathbf{x}}^0,\dots,\bar{\mathbf{x}}^{\tau-1})$ является локально-оптимальной относительно $PV(\mathbf{p})$ траекторией тогда и только тогда, когда для всех $t\in\{0,\dots,T-1\}$ найдутся векторы $\bar{\mathbf{z}}^t\geqslant 0$, $\bar{\mathbf{z}}^{T-1}=\bar{\mathbf{x}}^T$ такие, что $(\bar{\mathbf{x}}^t,\bar{\mathbf{z}}^t)\in D_i^t(\mathbf{p},d_i(\mathbf{p}))$, где все числа $d_i^t(\mathbf{p})$ задаются однозначно вектором \mathbf{p} .

Доказательство. Докажем вначале первую эквивалентность.

НЕОБХОДИМОСТЬ. Пусть выполнены включения $(\mathbf{x}^t, \mathbf{z}^t) \in B_i^t(\mathbf{p}, d_i)$ для всех t. Из всех бюджетных ограничений выберем те, в которых участ-

вуют все \mathbf{x}^t :

$$\mathbf{p}^{0} \cdot \mathbf{x}^{0} = \mathbf{p}^{0} \cdot \boldsymbol{\omega}^{i,0} - d_{i}^{0},$$

$$\mathbf{p}^{1} \cdot \mathbf{x}^{1} = \mathbf{p}^{1} \cdot \boldsymbol{\omega}^{i,1} + R_{1}(\mathbf{p})d_{i}^{0} - d_{i}^{1},$$

$$\dots$$

$$\mathbf{p}^{T} \cdot \mathbf{x}^{T} \leq \mathbf{p}^{T} \cdot \boldsymbol{\omega}^{i,T} + R_{T}(\mathbf{p})d_{i}^{T-1}.$$

Каждое ограничение с номером t разделим на положительное число $R_{[t]}(\mathbf{p})$, полагая $R_{[0]}(\mathbf{p})=1$. Просуммировав полученные соотношения, получим неравенство $PV(\mathbf{p})\cdot\mathbf{x}\leqslant PV(\mathbf{p})\cdot\boldsymbol{\omega}^i$. Пусть теперь $t\leqslant T-2$. Рассмотрим следующую систему ограничений, пополненную тривиальными соотношениями:

$$\mathbf{p}^{0} \cdot \mathbf{x}^{0} = \mathbf{p}^{0} \cdot \boldsymbol{\omega}^{i,0} - d_{i}^{0},$$

$$\vdots$$

$$\mathbf{p}^{t} \cdot \mathbf{x}^{t} = \mathbf{p}^{t} \cdot \boldsymbol{\omega}^{i,t} + R_{t}(\mathbf{p}) d_{i}^{t-1} - d_{i}^{t},$$

$$\mathbf{p}^{t+1} \cdot 0 \leq \mathbf{p}^{t+1} \cdot \mathbf{z}^{t} \leq \mathbf{p}^{t+1} \cdot \boldsymbol{\omega}^{i,t+1} + R_{t+1}(\mathbf{p}) d_{i}^{t},$$

$$\mathbf{p}^{t+2} \cdot \boldsymbol{\omega}^{i,t+2} = \mathbf{p}^{t+2} \cdot \boldsymbol{\omega}^{i,t+2},$$

$$\vdots$$

$$\mathbf{p}^{T} \cdot \boldsymbol{\omega}^{i,T} = \mathbf{p}^{T} \cdot \boldsymbol{\omega}^{i,T}.$$

Снова разделив соответствующие выражения на $R_{[t]}(\mathbf{p})$ и просуммировав их, получим неравенство

$$PV(\mathbf{p}) \cdot (\mathbf{x}^1, \dots, \mathbf{x}^t, 0, \boldsymbol{\omega}^{i,t+2}, \dots, \boldsymbol{\omega}^{i,T}) \leqslant PV(\mathbf{p}) \cdot \boldsymbol{\omega}^i.$$

ДОСТАТОЧНОСТЬ. Пусть $\mathbf{x}=(\mathbf{x}^0,\dots,\mathbf{x}^T)\in\mathbb{R}_+^{(T+1)L}$ — бюджетно-допустимая относительно $PV(\mathbf{p})$ траектория. Определим по индукции числа $d_i^t=\mathbf{p}^t\cdot(\boldsymbol{\omega}^{i,t}-\mathbf{x}^t)+R_t(\mathbf{p})d_i^{t-1}$, полагая $d_i^{-1}=0$. Покажем далее, что векторы $\mathbf{z}^t=0$ при $t\leqslant T-2$, $\mathbf{z}^{T-1}=\mathbf{x}^T$, удовлетворяют всем условиям, достаточным для принадлежности $(\mathbf{x}^t,\mathbf{z}^t)\in B_i^t(\mathbf{p}^t,\mathbf{p}^{t+1},d_i^{t-1})$. Действительно, для этого достаточно показать лишь неотрицательность правых частей бюджетных ограничений на \mathbf{z}^t , которые равны

$$\mathbf{p}^{t}\boldsymbol{\omega}^{i,t+1} + R_{t+1}(\mathbf{p})d_{i}^{t} = R_{[t+1]}(\mathbf{p})[PV(\mathbf{p}) \cdot \boldsymbol{\omega}^{i} - PV(\mathbf{p}) \cdot (\mathbf{x}^{0}, \dots, \mathbf{x}^{t}, 0, \boldsymbol{\omega}^{i,t+2}, \dots, \boldsymbol{\omega}^{i,T})].$$

Указанное равенство получается путём рекуррентных подстановок выражений для d_i^t с последующим приведением подобных слагаемых. Наконец, неотрицательность полученных выражений следует из условия бюджетной допустимости траектории $\mathbf x$ относительно вектора цен $PV(\mathbf p)$.

Пусть теперь $\bar{\mathbf{x}}=(\bar{\mathbf{x}}^0,\dots,\bar{\mathbf{x}}^T)$ — локально-оптимальная траектория относительно вектора цен $PV(\mathbf{p})$. С учётом доказанных выше утверждений указанная эквивалентность условий следует непосредственно из определения локальной оптимальности. Лемма 5 доказана.

В силу доказанных выше утверждений для каждого $i \in N$ определена функция $\mathbf{x}^i: \mathbb{R}_{++}^{(T+1)L} \to \mathbb{R}_{+}^{(T+1)L}$, сопоставляющая каждой траектории цен \mathbf{p} единственную при этих ценах локально-оптимальную относительно вектора $PV(\mathbf{p})$ траекторию $\mathbf{x}^i(\mathbf{p})$. Тем самым в $\mathbb{R}_{++}^{(T+1)L}$ определена и функция совокупного спроса $\mathbf{x}(\mathbf{p}) = \sum\limits_{i \in N} \mathbf{x}^i(\mathbf{p})$.

Сформулируем теперь основное понятие настоящей работы.

Определение 5. Вектор $\mathbf{p}^* \in \mathbb{R}^{2L}_{++}$ называется равновесной системой цен, если имеет место равенство совокупного спроса и совокупного предложения: $\mathbf{x}(\mathbf{p}^*) = \mathbf{y}(\mathbf{p}^*) + \boldsymbol{\omega}$.

В дополнение к использованным ранее предположениям о параметрах нашей модели экономики сформулируем ещё два.

U4 (условие ресурсной связности). Для любых $k,k'\in L,\,t,t'\in\{1,\ldots,T\}$ таких, что $(k,t)\neq (k',t')$ и $|t-t'|\leqslant 1$, найдётся участник $i\in N$, у которого отношение предпочтения \succcurlyeq_i^t монотонно возрастает относительно $x_k^{i,t}$ при том, что $\boldsymbol{\omega}_{k'}^{i,t'}>0$.

Y6 (условие производственной ненасыщаемости). Для любого периода t и любого элемента $\mathbf{y} \in Y^t = \sum_{j \in M} Y_j^t$ найдётся $\mathbf{z} \in Y^t$ такой, что $\mathbf{z}^+ > \mathbf{v}^+$.

Основным результатом настоящей работы является

Теорема 1. Пусть в производственном секторе все технологические множества удовлетворяют условиям Y1–Y6, а отношения предпочтения \succeq_i^t — условиям U1–U4, и, кроме того, $\omega^{i,t} \neq 0$ для всех $i \in N, t \in \{0,\ldots,T\}$. Тогда существует равновесная система цен $\mathbf{p}^* \in \mathbb{R}_{++}^{(T+1) \cdot L}$.

2. Вспомогательные утверждения

В настоящем разделе приведены некоторые технические результаты, используемые в доказательстве теоремы существования. Значительная часть из них представляют собой обобщения или модификации (иногда совершенно незначительные) результатов, опубликованных в [4].

Пусть
$$\mathbf{q} \in \mathbb{R}^{2L}_{++}, \, t \in \{0,\dots,T-1\}$$
 и $\alpha \geqslant 1$. Положим

$$f_{\mathbf{q}}^t(\alpha) = (\mathbf{q}^t, \mathbf{q}^{t+1}) \cdot \mathbf{y}^t(\mathbf{q}^t, \alpha \mathbf{q}^{t+1}).$$

Лемма 6. Функция $f_{\mathbf{q}}^t(\alpha)$ является невозрастающей на множестве $[1,+\infty)$, и для любого числа $v\leqslant f_{\mathbf{q}}^t(1)$ найдутся $1\leqslant \alpha_1\leqslant \alpha_2<+\infty$ такие, что $(f_{\mathbf{q}}^t)^{-1}(v)=[\alpha_1,\alpha_2]$. При этом функция $\mathbf{y}^t(\mathbf{q}^t,\alpha\mathbf{q}^{t+1})$ постоянна на $[\alpha_1,\alpha_2]$.

Доказательство этого утверждения при t=0 содержится в [4, следствие 3]. В силу локального характера утверждения доказательство для произвольного t полностью идентично вышеупомянутому с точностью до замены $(\mathbf{q}^0, \mathbf{q}^1)$ на $(\mathbf{q}^t, \mathbf{q}^{t+1})$.

Лемма 7. Для любого вектора $\mathbf{q} \in \mathbb{R}_{++}^{(T+1)L}$ прообраз $PV^{-1}(\mathbf{q})$ является непустым выпуклым компактным подмножеством в $\mathbb{R}_{++}^{(T+1)L}$. При этом для любого $\lambda > 0$ выполнено $PV^{-1}(\lambda \mathbf{q}) = \lambda PV^{-1}(\mathbf{q})$ и множество $\mathbf{y}(PV^{-1}(\mathbf{q}))$ одноэлементно.

Доказательство. Для T=1 это утверждение было доказано в [4, лемма 9]. Доказательство общего случая будет проведено по индукции с использованием предыдущей леммы. Точнее говоря, покажем, что для любого $\tau \leqslant T$ найдутся конечные последовательности чисел $1 \leqslant \alpha_1^t \leqslant \alpha_2^t, 1 \leqslant t \leqslant \tau$ такие, что

$$\begin{split} PV_{\tau}^{-1}(\mathbf{q}^0,\dots,\mathbf{q}^{\tau}) &= \{\mathbf{q}^0\} \times [\alpha_1^1,\alpha_2^1]\mathbf{q}^1 \times [\alpha_1^1\alpha_1^2,\alpha_2^1\alpha_2^2]\mathbf{q}^2 \times \dots \\ &\times \left[\prod_{t=1}^{\tau} \alpha_1^t,\prod_{t=1}^{\tau} \alpha_2^t\right]\mathbf{q}^{\tau}, \end{split}$$

где $[\alpha_1, \alpha_2]$ **q** обозначает множество всех векторов вида α **q** для $\alpha \in [\alpha_1, \alpha_2]$, а $PV_{\tau}(\mathbf{p})$ — множество всех проекций элементов из $PV(\mathbf{p})$ на первые $(\tau+1)l$ компонент.

Базис индукции. Пусть $\tau=1$. Рассмотрим множество всех таких векторов $(\mathbf{p}^0,\mathbf{p}^1)$, что $PV_1(\mathbf{p}^0,\mathbf{p}^1)=(\mathbf{q}^0,\mathbf{q}^1)$. В силу определения $PV(\mathbf{p})$ выполнены равенства $\mathbf{p}^0=\mathbf{q}^0$, $\mathbf{p}^1=\alpha\mathbf{q}^1$, где

$$\alpha = R_1(\mathbf{p}^0, \mathbf{p}^1) = R_{[1]}(\mathbf{p}^0, \mathbf{p}^1) \geqslant 1.$$

Подставляя в последнее равенство выражения для \mathbf{p}^0 и \mathbf{p}^1 , получаем, что α должно удовлетворять тождеству

$$\alpha = R_1(\mathbf{q}^0, \alpha \mathbf{q}^1) = \frac{\alpha \mathbf{q}^1 \cdot \mathbf{y}^{0+}(\mathbf{q}^0, \alpha \mathbf{q}^1)}{\mathbf{q}^0 \cdot \mathbf{y}^{0-}(\mathbf{q}^0, \alpha \mathbf{q}^1)},$$

что эквивалентно равенству $f_{\mathbf{q}}^0(\alpha)=0$. В силу леммы 6 все такие α образуют отрезок $\left[\alpha_1^1,\alpha_2^1\right]$, следовательно $PV_1^{-1}(\mathbf{q}^0,\mathbf{q}^1)=\{\mathbf{q}^0\}\times\left[\alpha_1^1,\alpha_2^1\right]\mathbf{q}^1$.

Шаг индукции. Предположим, что для некоторого $\tau \leqslant T-1$ утверждение доказано. Рассмотрим множество всех таких векторов $(\mathbf{p}^0,\ldots,\mathbf{p}^\tau,\mathbf{p}^{\tau+1})$, что $PV_{\tau+1}(\mathbf{p}^0,\ldots,\mathbf{p}^\tau,\mathbf{p}^{\tau+1})=(\mathbf{q}^0,\ldots,\mathbf{q}^\tau,\mathbf{q}^{\tau+1})$. В частности, $PV_{\tau}(\mathbf{p}^0,\ldots,\mathbf{p}^\tau)=(\mathbf{q}^0,\ldots,\mathbf{q}^\tau)$ в силу определения отображения PV, следовательно,

$$(\mathbf{p}^0, \dots, \mathbf{p}^\tau) \in {\{\mathbf{q}^0\}} \times \left[\alpha_1^1, \alpha_2^1\right] \mathbf{q}^1 \times \left[\alpha_1^1 \alpha_1^2, \alpha_2^1 \alpha_2^2\right] \mathbf{q}^2 \times \dots \times \left[\prod_{t=1}^\tau \alpha_1^t, \prod_{t=1}^\tau \alpha_2^t\right] \mathbf{q}^\tau$$

для некоторых $\alpha_1^t \leqslant \alpha_2^t, \ 1 \leqslant t \leqslant \tau$. Пусть $\beta^1, \dots, \beta^\tau$ — такие элементы соответствующих отрезков, что $(\mathbf{p}^0, \dots, \mathbf{p}^\tau) = (\mathbf{q}^0, \beta^1 \mathbf{q}^1, \dots, \beta^\tau \mathbf{q}^\tau)$. Заметим, что в силу определения отображения PV для всех $t \leqslant \tau$ выполнено $\beta^t = R_{[t]}(\mathbf{p})$ и искомый вектор $\mathbf{p}^{\tau+1}$ должен быть положительно пропорционален вектору $\mathbf{q}^{\tau+1}$. Будем искать его в виде $\mathbf{p}^{\tau+1} = \alpha \cdot \beta^\tau \mathbf{q}^{\tau+1}$, что не ограничивает общности ввиду $\beta^\tau > 0$. С другой стороны, прямо из определения $PV(\mathbf{p})$ следует соотношение

$$\mathbf{p}^{\tau+1} = R_{[\tau+1]}(\mathbf{p})\mathbf{q}^{\tau+1} = R_{[\tau]}(\mathbf{p})R_{\tau+1}(\mathbf{p}^{\tau}, \mathbf{p}^{\tau+1})\mathbf{q}^{\tau+1}$$
$$= \beta^{\tau}R_{\tau+1}(\mathbf{p}^{\tau}, \mathbf{p}^{\tau+1})\mathbf{q}^{\tau+1} = \beta^{\tau}R_{\tau+1}(\beta^{\tau}\mathbf{q}^{\tau}, \mathbf{p}^{\tau+1})\mathbf{q}^{\tau+1}.$$

Подставляя предыдущее выражение для $\mathbf{p}^{\tau+1}$, получаем, что α должно удовлетворять условию

$$\alpha\beta^{\tau} = \beta^{\tau}R_{\tau+1}(\beta^{\tau}\mathbf{q}^{\tau}, \alpha\beta^{\tau}\mathbf{q}^{\tau+1}) = \beta^{\tau}R_{\tau+1}(\mathbf{q}^{\tau}, \alpha\mathbf{q}^{\tau+1})$$

ввиду свойства однородности степени нуль для функции $R_{\tau+1}$. Таким образом, $\alpha = R_{\tau+1}(\mathbf{q}^{\tau}, \alpha \mathbf{q}^{\tau+1})$, что снова приводит нас к эквивалентному условию $f_{\mathbf{q}}^{\tau+1}(\alpha) = 0$, порождающему в силу леммы 6 отрезок $\left[\alpha_1^{\tau+1}, \alpha_2^{\tau+1}\right]$ возможных значений для α . Заметим, что это равенство уже не содержит зависимости от конкретного выбора множителей β^t , поэтому полученный таким образом множитель α порождает вектор $\mathbf{p}^{\tau+1} = \alpha \cdot \beta^{\tau} \mathbf{q}^{\tau+1}$, дополняющий $(\mathbf{p}^0, \dots, \mathbf{p}^{\tau})$ до элемента

$$(\mathbf{p}^0, \dots, \mathbf{p}^{\tau+1}) \in PV_{\tau+1}^{-1}(\mathbf{q}^0, \dots, \mathbf{q}^{\tau+1}).$$

Продолжая индукционный процесс до $\tau=T$, мы получим доказательство утверждения о структуре множества $PV^{-1}(\mathbf{q})$. Свойство положительной однородности степени 1 для точечно-множественного соответствия PV^{-1} тривиально следует из соответствующего свойства для PV.

Покажем теперь одноэлементность множества $\mathbf{y}(PV^{-1}(\mathbf{q}))$. Пусть \mathbf{p} , $\overline{\mathbf{p}}$ — два различных элемента из множества $PV^{-1}(\mathbf{q})$, тогда в силу предыдущих рассуждений

$$\mathbf{p} = \left(\mathbf{q}^{0}, \alpha^{1} \mathbf{q}^{1}, \alpha^{1} \alpha^{2} \mathbf{q}^{2}, \dots, \prod_{t=1}^{T} \alpha^{t} \mathbf{q}^{T}\right),$$

$$\overline{\mathbf{p}} = \left(\mathbf{q}^{0}, \overline{\alpha}^{1} \mathbf{q}^{1}, \overline{\alpha}^{1} \overline{\alpha}^{2} \mathbf{q}^{2}, \dots, \prod_{t=1}^{T} \overline{\alpha}^{t} \mathbf{q}^{T}\right)$$

для некоторых $\alpha^t, \overline{\alpha}^t \in [\alpha_1^t, \alpha_2^t]$. Сравним значения $\mathbf{y}^{\tau}(\mathbf{p}^{\tau}, \mathbf{p}^{\tau+1})$ и $\mathbf{y}^{\tau}(\overline{\mathbf{p}}^{\tau}, \overline{\mathbf{p}}^{\tau+1})$ для произвольного $\tau \leqslant T-1$. Получим

$$\mathbf{y}^{\tau}(\mathbf{p}^{\tau}, \mathbf{p}^{\tau+1}) = \mathbf{y}^{\tau} \left(\prod_{t=1}^{\tau} \alpha^{t} \mathbf{q}^{\tau}, \prod_{t=1}^{\tau} \alpha^{t} \alpha^{\tau+1} \mathbf{q}^{\tau+1} \right) = \mathbf{y}^{\tau}(\mathbf{q}^{\tau}, \alpha^{\tau+1} \mathbf{q}^{\tau+1})$$

в силу свойства однородности степени нуль для функции \mathbf{y}^{τ} , аналогично, $\mathbf{y}^{\tau}(\overline{\mathbf{p}}^{\tau}, \overline{\mathbf{p}}^{\tau+1}) = \mathbf{y}^{\tau}(\mathbf{q}^{\tau}, \overline{\alpha}^{\tau+1}\mathbf{q}^{\tau+1})$, где $\alpha^{\tau+1}, \overline{\alpha}^{\tau+1} \in \left[\alpha_{1}^{\tau+1}, \alpha_{2}^{\tau+1}\right]$. По лемме 6 в силу постоянства функции $\mathbf{y}^{\tau}(\mathbf{q}^{\tau}, \alpha \mathbf{q}^{\tau+1})$ на $\left[\alpha_{1}^{\tau+1}, \alpha_{2}^{\tau+1}\right]$ получим $\mathbf{y}^{\tau}(\mathbf{p}^{\tau}, \mathbf{p}^{\tau+1}) = \mathbf{y}^{\tau}(\overline{\mathbf{p}}^{\tau}, \overline{\mathbf{p}}^{\tau+1})$ для всех $\tau \leqslant T-1$. Отсюда и из определения $\mathbf{y}(\mathbf{p})$ следует, что $\mathbf{y}(\mathbf{p}) = \mathbf{y}(\overline{\mathbf{p}})$. Лемма 7 доказана.

Лемма 8. Точечно-множественное соответствие

$$PV^{-1}: \mathbf{q} \mapsto PV^{-1}(\mathbf{q})$$

имеет замкнутый график, и множество $PV^{-1}(K)$ ограничено для любого компактного множества $K\subset \mathbb{R}^{L(T+1)}_{++}$.

Доказательство. Для T=1 этот результат доказан в [4, лемма 9]. Обобщим его на случай произвольного T. Пусть имеются сходящиеся последовательности $\mathbf{q}_n \to \mathbf{q}, \ \mathbf{p}_n \in PV^{-1}(\mathbf{q}_n), \ \mathbf{p}_n \to \mathbf{p}.$ Покажем, что $\mathbf{p} \in PV^{-1}(\mathbf{q})$. Для любого $\tau \in \{0,\ldots,T\}$ выполнено $\mathbf{q}_n^{\tau} \to \mathbf{q}^{\tau}, \ \mathbf{p}_n^{\tau} \to \mathbf{p}^{\tau}$. При этом в силу предыдущей леммы существуют последовательности чисел $\alpha_n^t \geqslant 1$ для $t \in \{1,\ldots,T\}$ такие, что $\mathbf{p}_n^{\tau} = \prod_{t=1}^{\tau} \alpha_n^t \mathbf{q}_n^{\tau}$ и $f_{\mathbf{q}_n}(\alpha_n^t) = 0$. Заметим, что все последовательности α_n^t являются сходящимися. Действительно, для t=1 имеем

$$\alpha_n^1 = \frac{\|\mathbf{p}_n^t\|}{\|\mathbf{q}_n^t\|} \to \alpha^1 = \frac{\|\mathbf{p}^t\|}{\|\mathbf{q}^t\|} \geqslant 1,$$

остальные пределы вычисляются из соотношений $\mathbf{p}_n^{\tau} = \prod_{t=1}^{\tau} \alpha_n^t \mathbf{q}_n^{\tau}$ рекуррентно. Кроме того, в силу непрерывности функции $f_{\mathbf{q}}(\alpha)$ получаем, что $f_{\mathbf{q}}(\alpha^t) = \lim_{n \to \infty} f_{\mathbf{q}_n}(\alpha_n^t) = 0$. В силу рассуждений, проведённых при доказательстве предыдущей леммы это в точности означает, что

$$\mathbf{p} = \left(\mathbf{q}^0, \alpha^1 \mathbf{q}^1, \alpha^1 \alpha^2 \mathbf{q}^2, \dots, \prod_{t=1}^T \alpha^t \mathbf{q}^T\right) \in PV^{-1}(\mathbf{q}).$$

Докажем теперь ограниченность прообраза произвольного компакта $PV^{-1}(K)$. Предположим противное, т. е. что существует неограниченная последовательность $\mathbf{p}_n \in PV^{-1}(\mathbf{q}_n)$ для некоторой последовательности \mathbf{q}_n элементов компактного множества K. Без ограничения общности последовательность \mathbf{q}_n можно считать сходящейся. Как и ранее получаем, что $\mathbf{p}_n^{\tau} = \prod_{t=1}^{\tau} \alpha_n^t \mathbf{q}_n^{\tau}$ для соответствующих последовательностей α_n^t , при этом неограниченность \mathbf{p}_n означает неограниченность некоторой последовательности α_n^t . Рассмотрим минимальное τ , при котором α_n^{τ} неограничена, тогда последовательность векторов

$$\frac{1}{\prod\limits_{t=1}^{\tau-1}\alpha_n^t} (\mathbf{p}_n^{\tau-1}, \mathbf{p}_n^{\tau}) = \frac{1}{\prod\limits_{t=1}^{\tau-1}\alpha_n^t} \left(\prod\limits_{t=1}^{\tau-1}\alpha_n^t \mathbf{q}_n^{\tau-1}, \prod\limits_{t=1}^{\tau}\alpha_n^t \mathbf{q}_n^{\tau} \right) = \left(\mathbf{q}_n^{\tau-1}, \alpha_n^{\tau} \mathbf{q}_n^{\tau} \right)$$

также неограничена, причём по построению

$$\frac{1}{\prod\limits_{t=1}^{\tau-1}\alpha_n^t} \left(\mathbf{p}_n^{\tau-1}, \mathbf{p}_n^{\tau}\right) \in PV_1^{-1} \left(\mathbf{q}_n^{\tau-1}, \mathbf{q}_n^{\tau}\right),$$

где PV_1 — функция приведённых цен, соответствующая случаю T=1. В силу сходимости последовательности \mathbf{q}_n последовательность $(\mathbf{q}_n^{\tau-1}, \mathbf{q}_n^{\tau})$ также является сходящейся, поэтому существует компактное множество $K_{\tau} \subset \mathbb{R}^{2l}_{++}$, содержащее в себе последовательность $(\mathbf{q}_n^{\tau-1}, \mathbf{q}_n^{\tau})$. Таким образом, прообраз $PV_1^{-1}(K_{\tau})$, содержащий неограниченную последовательность $\frac{1}{\tau-1}(\mathbf{p}_n^{\tau-1}, \mathbf{p}_n^{\tau})$, является неограниченным множеством, что $\prod_{t=1}^{\alpha_n^t} \alpha_n^t$

противоречит утверждению леммы 9 из [4]. Лемма 8 доказана.

Следствие 1. При любом $\mathbf{q} \in \mathbb{R}_{++}^{T\cdot L}$ множество $\widehat{\mathbf{y}}(\mathbf{q}) = \mathbf{y}(PV^{-1}(\mathbf{q}))$ является одноэлементным. Кроме того, функция $\widehat{\mathbf{y}} : \mathbb{R}_{++}^{2L} \to \mathbb{R}^{2L}$ непрерывна, положительно однородна степени нуль и при любом $\mathbf{q} \in \mathbb{R}_{++}^{2L}$ справедливо тождество $\mathbf{q} \cdot \widehat{\mathbf{y}}(\mathbf{q}) \equiv 0$.

Пусть $\mathbf{q} \in \mathbb{R}_{++}^{(T+1)L}$ — произвольный элемент, через $\widehat{\mathbf{x}}^i(\mathbf{q})$ обозначим локально-оптимальную траекторию потребления для индивида $i \in N$ при ценах \mathbf{q} , которая существует и единственна в силу леммы 4.

Лемма 9. Если выполнены предположения U1–U3, а начальные запасы $\boldsymbol{\omega}^{i,t}$ отличны от 0 при всех t, то функция $\widehat{\mathbf{x}}^i: \mathbb{R}_{++}^{(T+1)\cdot L} \to \mathbb{R}_{+}^L$ является непрерывной, положительно однородной степени нуль и удовлетворяет закону Вальраса: при любом $\mathbf{q} \in \mathbb{R}_{++}^{(T+1)\cdot L}$ выполнено тождество $\mathbf{q} \cdot \widehat{\mathbf{x}}^i(\mathbf{q}) = \mathbf{q} \cdot \boldsymbol{\omega}^i$.

Доказательство. Рассмотрим произвольную сходящуюся последовательность цен $\mathbf{q}_n \to \mathbf{q} \in \mathbb{R}_{++}^{(T+1)L}$. Положим $\mathbf{x}_n = \widehat{\mathbf{x}}^i(\mathbf{q}_n)$. Требуется показать, что последовательность \mathbf{x}_n является сходящейся к точке $\widehat{\mathbf{x}}^i(\mathbf{q})$. Заметим вначале, что последовательность \mathbf{x}_n ограничена. Действительно, в силу строгой положительности всех компонент предельной точки \mathbf{q} найдутся положительные числа C > c > 0, для которых

$$c \leqslant \inf_{j,n} (q_j)_n, \quad C \geqslant \sup_{j,n} (q_j)_n.$$

Тогда для всех компонент всех членов последовательности имеем следующие ограничения:

$$0 \leqslant (x_j)_n \leqslant \frac{C \cdot (T+1)L}{c} \max_{t,k} \omega_k^{i,t}.$$

Таким образом, последовательность \mathbf{x}_n имеет по меньшей мере одну предельную точку. Для доказательства непрерывности достаточно показать, что любая предельная точка $\overline{\mathbf{x}}$ совпадает с $\hat{\mathbf{x}}^i(\mathbf{q})$. В свою очередь, для этого достаточно показать локальную оптимальность $\overline{\mathbf{x}}$ при ценах \mathbf{q} , тогда указанное совпадение будет следовать из единственности локальнооптимальной траектории.

Согласно определению локальной оптимальности нужно отыскать такой вектор $\overline{\mathbf{z}}^t \geqslant 0$, что $(\overline{\mathbf{x}}^t, \overline{\mathbf{z}}^t) \succcurlyeq_i^t (\mathbf{x}^t, \mathbf{z}^t)$ для всех элементов $(\overline{\mathbf{x}}^0, \dots, \overline{\mathbf{x}}^{t-1}, \mathbf{x}^t, \mathbf{z}^t, \boldsymbol{\omega}^{i,t+2}, \dots, \boldsymbol{\omega}^{i,T}) \in \widetilde{B}_i(\mathbf{q})$ при том, что $(\overline{\mathbf{x}}^0, \dots, \overline{\mathbf{x}}^{t-1}, \overline{\mathbf{x}}^t, \overline{\mathbf{z}}^t, \boldsymbol{\omega}^{i,t+2}, \dots, \boldsymbol{\omega}^{i,T}) \in \widetilde{B}_i(\mathbf{q})$. Пусть $0 < \varepsilon < 1$ — некоторое число, тогда в силу сходимости $\mathbf{x}_n \to \overline{\mathbf{x}}$ для достаточно больших номеров имеем

$$(\mathbf{x}_n^0, \dots, \mathbf{x}_n^{t-1}, \varepsilon \mathbf{x}^t, \varepsilon \mathbf{z}^t, \boldsymbol{\omega}^{i,t+2}, \dots, \boldsymbol{\omega}^{i,T}) \in \widetilde{B}_i(\mathbf{q}_n).$$

Ввиду того, что \mathbf{x}_n — локально-оптимальная траектория при ценах \mathbf{q}_n , выполнено $(\mathbf{x}_n^t, \mathbf{z}_n^t) \succcurlyeq_i^t (\varepsilon \mathbf{x}^t, \varepsilon \mathbf{z}^t)$. В силу доказанного выше последовательность \mathbf{z}_n^t ограничена, поэтому без ограничения общности можно считать, что $\mathbf{z}_n^t \to \overline{\mathbf{z}}^t$. Отсюда в силу полунепрерывности сверху отношения

предпочтения для произвольного $0 < \varepsilon < 1$ получим

$$(\overline{\mathbf{x}}^t, \overline{\mathbf{z}}^t) \succcurlyeq_i^t (\varepsilon \mathbf{x}^t, \varepsilon \mathbf{z}^t).$$

Далее, переходя к пределу по $\varepsilon \to 1$ и используя полунепрерывность снизу для отношения предпочтения, получаем требуемое соотношение $(\overline{\mathbf{x}}^t, \overline{\mathbf{z}}^t) \succcurlyeq_i^t (\mathbf{x}^t, \mathbf{z}^t)$. Тем самым непрерывность функции $\widehat{\mathbf{x}}^i(\mathbf{q})$ доказана. Свойство однородности тривиально следует из однородности определяющих неравенств. Наконец, тождество Вальраса для локально-оптимальных траекторий уже было доказано в лемме 4.

Заметим, что в силу леммы $5 \hat{\mathbf{x}}^i(PV(\mathbf{p})) \equiv \mathbf{x}^i(\mathbf{p})$ для всех $\mathbf{p} \in \mathbb{R}_{++}^{(T+1)L}$, откуда, в частности, следуют свойства непрерывности и однородности для функции спроса $\mathbf{x}^i(\mathbf{p})$. Закон Вальраса для функции $\mathbf{x}^i(\mathbf{p})$ не имеет места, однако в силу доказанного выше выполнено тождество Вальраса относительно приведённых цен:

$$PV(\mathbf{p}) \cdot \mathbf{x}^i(\mathbf{p}) = PV(\mathbf{p}) \cdot \boldsymbol{\omega}^i.$$

Определим теперь функцию $\widehat{\mathbf{z}}(\mathbf{q})$, полагая

$$\widehat{\mathbf{z}}(\mathbf{q}) = \sum_{i \in N} \widehat{\mathbf{x}}^i(\mathbf{q}) - \sum_{i \in N} \boldsymbol{\omega}^i - \widehat{\mathbf{y}}(\mathbf{q}).$$

В силу доказанного выше эта функция определена всюду в $\mathbb{R}_{++}^{(T+1)\cdot L}$. Заметим, что вектор $\mathbf{p}^* \in \mathbb{R}_{++}^{(T+1)TL}$ является равновесным тогда и только тогда, когда $\mathbf{p}^* \in PV^{-1}(\mathbf{q}^*)$, где $\mathbf{q}^* \in \mathbb{R}_{++}^{(T+1)L}$ удовлетворяет условию $\widehat{\mathbf{z}}(\mathbf{q}^*) = 0$.

Лемма 10. В условиях теоремы 1 функция $\hat{\mathbf{z}}(\mathbf{q})$ является непрерывной, однородной степени нуль и удовлетворяет закону Вальраса: при любом $\mathbf{q} \in \mathbb{R}_{++}^{(T+1) \cdot L}$ выполнено тождество $\mathbf{q} \cdot \hat{\mathbf{z}}(\mathbf{q}) = 0$.

Справедливость этой леммы легко вытекает из предыдущих утверждений.

Рассмотрим множество векторов

$$\widetilde{Z} = \left\{ \mathbf{z} \in \mathbb{R}^{(T+1)L} \mid \mathbf{z}^t = \sum_{i \in N} \mathbf{x}^{i,t} - \sum_{j \in M} (\mathbf{y}_j^{(t-1)+} - \mathbf{y}_j^{t-}) - \sum_{i \in N} \boldsymbol{\omega}^{i,t}, \right.$$
$$t \in \{0, \dots, T\}, \ (-\mathbf{y}^{t-}, \mathbf{y}^{t+}) \in Y_j^t \right\}.$$

При t=0 полагаем $\mathbf{y}^{(-1)-}=0$, а при $t=T-\mathbf{y}^{T+}=0$. По определению $\widehat{\mathbf{z}}(\mathbf{q})\in\widetilde{Z}$.

Лемма 11. Пусть $\mathbf{v} \in \mathbb{R}^{(T+1)L}$ и $\widetilde{Z}(\mathbf{v}) = \{\mathbf{z} \in \widetilde{Z} \mid \mathbf{z} \leqslant \mathbf{v}\}$. Тогда множество всех допустимых значений слагаемых, входящих во все элементы $\mathbf{z} \in \widetilde{Z}(\mathbf{v})$, т. е. всех $\mathbf{x}^{i,t}$, \mathbf{y}_j^{t-} , \mathbf{y}_j^{t+} при любых $i \in N, j \in M, t \in \{0, \dots, T\}$, ограничено сверху.

Доказательство этого утверждения при T=1 содержится в лемме 13 из [4]. Используя индукцию, докажем общий случай. Заметим, что для любого подмножества $U\subset Y_j^t\subset\mathbb{R}^{2L}$ из ограниченности проекции множества U на первые l компонент следует ограниченность всего множества U. Действительно, если существует последовательность $\mathbf{y}_n\in U$ такая, что $\|\mathbf{y}_n\|\to +\infty$, то без ограничения общности можно считать последовательность элементов единичной сферы $\mathbf{z}_n=\mathbf{y}_n/\|\mathbf{y}_n\|$ сходящейся к некоторому $\mathbf{z}\neq 0$. При этом $\mathbf{z}^-=\lim_{n\to\infty}\mathbf{y}_n^-/\|\mathbf{y}_n\|=0$ в силу ограниченности последовательности числителей, т. е. $\mathbf{z}>0$. С другой стороны, для всех n таких, что $\|\mathbf{y}_n\|\geqslant 1$, выполнено

$$\mathbf{z}_n = \left(1 - \frac{1}{\|\mathbf{y}_n\|}\right) 0 + \frac{1}{\|\mathbf{y}_n\|} \mathbf{y}_n \in Y_j^t,$$

поэтому $\mathbf{z} \in Y_j^t$, что противоречит условию отсутствия «рога изобилия». Базис индукции. Пусть t=0, тогда

$$\mathbf{z}^0 = \sum_{i \in N} \mathbf{x}^{i,0} + \sum_{j \in M} \mathbf{y}_j^{0-} - \sum_{i \in N} \boldsymbol{\omega}^{i,0} \leqslant \mathbf{v}^0.$$

Отсюда для всех $\mathbf{x}^{i,0},\,\mathbf{y}_j^{0-}$ следует ограниченность сверху вектором $\sum\limits_{i\in N} \boldsymbol{\omega}^{i,0}+\mathbf{v}^0.$

Шаг индукции. Предположим, что для всех $t < \tau$ доказана ограниченность всех $\mathbf{x}^{i,t}, \mathbf{y}_j^{t\pm}$ и для $t = \tau$ доказана ограниченность $\mathbf{x}^{i,\tau}, \mathbf{y}_j^{\tau-}$. В силу сделанного выше замечания отсюда следует ограниченность множества всех слагаемых вида $\mathbf{y}_j^{\tau+}$. Рассмотрим теперь всевозможные векторы вида

$$\mathbf{z}^{\tau+1} = \sum_{i \in N} \mathbf{x}^{i,\tau+1} + \sum_{j \in M} \mathbf{y}_j^{(\tau+1)-} - \sum_{j \in M} \mathbf{y}_j^{\tau+} - \sum_{i \in N} \boldsymbol{\omega}^{i,\tau} \leqslant \mathbf{v}^{\tau+1}.$$

В силу изложенного выше отсюда вытекает ограниченность множества всех слагаемых вида $\mathbf{x}^{i,\tau+1},\,\mathbf{y}_j^{(\tau+1)-},\,$ что завершает выполнение шага индукции.

3. Доказательство теоремы существования равновесий

Окончание доказательства существования равновесия опирается на известную теорему о неподвижной точке Какутани (см., например, [2, C.III.(14)]).

Теорема 2. Пусть $S \subset \mathbb{R}^m$ — непустое выпуклое компактное множество. Если соответствие $\varphi: S \to 2^S \setminus \{\varnothing\}$ выпуклозначно и замкнуто, то оно имеет неподвижную точку $\mathbf{x}^* \in \varphi(\mathbf{x}^*)$.

Напомним, что условие замкнутости для точечно-множественного соответствия означает следующее: для любых сходящихся последовательностей $\mathbf{x}_n \to \overline{\mathbf{x}}, \ \mathbf{y}_n \to \overline{\mathbf{y}}, \ \mathrm{rge} \ \mathbf{y}_n \in \varphi(\mathbf{x}_n), \ \mathrm{выполнено} \ \overline{\mathbf{y}} \in \varphi(\overline{\mathbf{x}}).$

Доказательство теоремы существования равновесий. Из сказанного выше следует, что для доказательства теоремы достаточно убедиться в существовании $\mathbf{q}^* \in \mathbb{R}_{++}^{(T+1)L}$ такого, что $\widehat{\mathbf{z}}(\mathbf{q}^*) = 0$. Рассмотрим единичный симплекс

$$\Delta = \left\{ \mathbf{q} \in \mathbb{R}_+^{(T+1)L} \mid \sum_{k \in 2L} q_k = 1 \right\}$$

и его относительную внутренность $\Delta^0 = \{ \mathbf{q} \in \Delta \mid \mathbf{q} \gg 0 \}$. В силу свойства положительной однородности степени нуль достаточно рассмотреть ограничение функции $\hat{\mathbf{z}}(\mathbf{q})$ на множестве Δ^0 . Для каждого $n \geqslant 1$ определим множество

$$\Delta_n = \left\{ \mathbf{q} \in \Delta \mid \forall k : q_k \geqslant \frac{1}{n + (T+1)l} \right\} \subset \Delta^0.$$

Заметим, что в силу непрерывности образ $\widehat{\mathbf{z}}(\Delta_n)$ является ограниченным множеством, поэтому существует выпуклый компакт $B_n \supset \widehat{\mathbf{z}}(\Delta_n)$. Для произвольного элемента $\mathbf{z} \in B_n$ определим множество

$$Q_n(\mathbf{z}) = \{ \overline{\mathbf{q}} \in \Delta_n \mid \forall \mathbf{q} \in \Delta_n : \ \mathbf{q} \cdot \mathbf{z} \leqslant \overline{\mathbf{q}} \cdot \mathbf{z} \}.$$

Легко видеть, что Q_n является выпуклозначным замкнутым соответствием. Поэтому соответствие $\varphi_n: \Delta_n \times B_n \to \Delta_n \times B_n$, где $\varphi_n(\mathbf{q}, \mathbf{z}) = Q_n(\mathbf{z}) \times \{\widehat{\mathbf{z}}(\mathbf{q})\}$, также будет выпуклозначным и замкнутым и, следовательно, имеет неподвижную точку $(\mathbf{q}_n, \mathbf{z}_n)$. Согласно определению φ_n выполнено $\mathbf{z}_n = \widehat{\mathbf{z}}(\mathbf{q}_n)$ и для всех $\mathbf{q} \in \Delta_n$ выполнено $\mathbf{q} \cdot \mathbf{z}_n \leqslant \mathbf{q}_n \cdot \mathbf{z}_n = 0$ в силу тождества Вальраса. В силу компактности Δ без ограничения общности можно считать, что последовательность $\mathbf{q}_n \to \mathbf{q}^* \in \Delta$.

Рассмотрим последовательность $\mathbf{z}_n \in \mathbb{R}^{(T+1)L}$, покажем прежде всего, что она ограничена. Предположим противное, тогда без ограничения

общности можно считать, что $\|\mathbf{z}_n\| \to +\infty$. Рассмотрим ограниченную последовательность $\mathbf{v}_n = \mathbf{z}_n/\|\mathbf{z}_n\|$. В силу леммы 11 все последовательности, образованные слагаемыми вида $\mathbf{x}_n^{i,t}/\|\mathbf{z}_n\|$, $(\mathbf{y}_n^{t\pm})_j/\|\mathbf{z}_n\|$, ограничены, поэтому переходя, если нужно, к подпоследовательности, можно считать, что

$$\frac{\mathbf{x}_n^{i,t}}{\|\mathbf{z}_n\|} \to \overline{\mathbf{x}}^{i,t} \geqslant 0, \quad \frac{(\mathbf{y}_n^{t\pm})_j}{\|\mathbf{z}_n\|} \to \overline{\mathbf{y}}_j^{t\pm}.$$

В силу того, что $\|\mathbf{z}_n\| \to +\infty$ при любом $\lambda \geqslant 0$, для всех достаточно больших номеров выполнены включения $\lambda \left(-\mathbf{y}_{\mathbf{j},\mathbf{n}}^{\mathbf{t}-}, \mathbf{y}_{\mathbf{j},\mathbf{n}}^{\mathbf{t}+} \right) / \|\mathbf{z}_n\| \in Y_j^t$, откуда следует $\lambda \overline{\mathbf{y}}_j^t \in Y_j^t$, что в силу условия Y4 означает, что $\overline{\mathbf{y}}_j^{t+} = 0$ для всех j и t. Поэтому

$$\mathbf{v}_{n}^{t} = \left(\sum_{i \in N} \frac{\mathbf{x}_{n}^{i,t}}{\|\mathbf{z}_{n}\|} - \sum_{i \in N} \frac{\boldsymbol{\omega}^{i,t}}{\|\mathbf{z}_{n}\|} - \sum_{j \in M} \frac{\mathbf{y}_{j,n}^{t+}}{\|\mathbf{z}_{n}\|} + \sum_{j \in M} \frac{\mathbf{y}_{j,n}^{(t-1)-}}{\|\mathbf{z}_{n}\|}\right) \to \overline{\mathbf{v}}^{t}$$

$$= \left(\sum_{i \in N} \overline{\mathbf{x}}^{i,t} + \sum_{i \in M} \overline{\mathbf{y}}_{j}^{(t-1)-}\right) \geqslant 0,$$

т. е. $\overline{\mathbf{v}} \geqslant 0$. С другой стороны, $\mathbf{q} \cdot \mathbf{v}_n = (\mathbf{q} \cdot \mathbf{z}_n/\|\mathbf{z}_n\| \leqslant 0$ для всех $\mathbf{q} \in \Delta_n$. Отсюда предельным переходом получаем $\mathbf{q} \cdot \mathbf{v} \leqslant 0$ для всех $\mathbf{q} \in \Delta$, что с учётом предыдущего возможно лишь при $\overline{\mathbf{v}} = 0$. Однако это невозможно ввиду очевидного равенства $\|\overline{\mathbf{v}}\| = 1$. Итак, предположив неограниченность последовательности \mathbf{z}_n , мы пришли к противоречию. Следовательно, \mathbf{z}_n ограничена. Ещё раз применяя лемму 11, получим, что последовательности $\mathbf{x}_n^{i.t}$, и $\mathbf{y}_{j,n}^{t\pm}$ ограничены, поэтому, переходя, если нужно, к подпоследовательности, можно считать, что для всех t имеет место сходимость

$$\mathbf{z}_n^t \to \overline{\mathbf{z}}^t = \sum_{i \in N} \overline{\mathbf{x}}^{i,t} - \sum_{i \in N} \omega^{i,t} - \sum_{j \in M} \overline{\mathbf{y}}_j^{t+} + \sum_{j \in M} \overline{\mathbf{y}}_j^{(t-1)-},$$

где $\mathbf{x}_n^i \to \overline{\mathbf{x}}^i, \, \mathbf{y}_{j,n}^{t\pm} \to \overline{\mathbf{y}}_j^{t\pm}$. Поскольку для всех n выполнено $\mathbf{q} \cdot \mathbf{z}_n \leqslant 0$ для любого $\mathbf{q} \in \Delta_n$, то, как и выше, получаем $\overline{\mathbf{z}} \leqslant 0$.

Заметим, что по построению все векторы $\mathbf{x}_n^i = (\mathbf{x}_n^{i,0}, \dots, \mathbf{x}_n^{i,T})$ являлись локально-оптимальными, а значит, и бюджетно-допустимыми траекториями относительно цен \mathbf{q}_n . Учитывая, что бюджетные ограничения выдерживают предельные переходы, получаем отсюда бюджетную допустимость $\overline{\mathbf{x}}^i = (\overline{\mathbf{x}}^{i,0}, \dots, \overline{\mathbf{x}}^{i,T})$ относительно цен \mathbf{q}^* . Более того, поскольку все \mathbf{x}_n^i удовлетворяли тождеству Вальраса, это свойство будет выполнено и для $\overline{\mathbf{x}}^i$. Предположим теперь, что $\mathbf{q}^* = \lim_{n \to \infty} \mathbf{q}_n \in \Delta \setminus \Delta^0$,

т. е. $(q_k^t)^* = 0$ для некоторых $t \in \{0, \dots, T\}$ и $k \in L$. Тогда траектория $\tilde{\mathbf{x}}^i = (\overline{\mathbf{x}}^{i,0}, \dots, \overline{\mathbf{x}}^{i,t} + \mathbf{e}^k \dots, \overline{\mathbf{x}}^{i,T})$ также является бюджетно-допустимой (здесь $\mathbf{e}^k - k$ -й единичный базисный вектор), следовательно, для любого числа $0 < \varepsilon < 1$ траектория $\varepsilon \tilde{\mathbf{x}}^i$ тоже бюджетно-допустима. В силу условия ресурсной связности существует потребитель $i \in N$, желающий товар k и при этом имеющий строго положительный доход при ценах \mathbf{q}^* . Поэтому для всех достаточно больших номеров n траектория $\varepsilon \tilde{\mathbf{x}}^i$ будет бюджетно-допустимой и при ценах \mathbf{q}_n . Используя локальную оптимальность траекторий \mathbf{x}_n^i при этих ценах, а также полунепрерывность отношений предпочтения сверху и снизу, после предельных переходов по $n \to +\infty$ и $\varepsilon \to 1$ получаем противоречивое соотношение

$$(\overline{\mathbf{x}}^{i,t}, \overline{\mathbf{x}}^{i,t+1}) \succcurlyeq_i^t (\overline{\mathbf{x}}^{i,t} + \mathbf{e}^k, \overline{\mathbf{x}}^{i,t+1}).$$

Случай t=T рассматривается аналогично, при этом в итоге получается соотношение $(\overline{\mathbf{x}}^{i,T-1},\overline{\mathbf{x}}^{i,T}) \succcurlyeq_i^t (\overline{\mathbf{x}}^{i,T-1},\overline{\mathbf{x}}^{i,T}+\mathbf{e}^k)$.

Из полученного противоречия следует, что $\mathbf{q}^* \gg 0$. Поэтому последовательность \mathbf{q}_n целиком содержится в некотором компакте $K \subset \mathbb{R}_{++}^{(T+1)L}$. Отсюда в силу непрерывности функции $\widehat{\mathbf{z}}(\mathbf{q})$ получаем, что $\overline{\mathbf{z}} = \widehat{\mathbf{z}}(\mathbf{q}^*)$; в частности, выполнено тождество Вальраса $\mathbf{q}^* \cdot \overline{\mathbf{z}} = 0$. При этом, как было доказано выше, $\overline{\mathbf{z}} \leqslant 0$. Следовательно, $\widehat{\mathbf{z}}(\mathbf{q}^*) = \overline{\mathbf{z}} = 0$. Теперь в силу тождеств $\mathbf{x}(\mathbf{p}) = \widehat{\mathbf{x}}(PV(\mathbf{p}))$ и $\mathbf{y}(\mathbf{p}) = \widehat{\mathbf{y}}(PV(\mathbf{p}))$ в качестве равновесных цен можно выбрать любой элемент $\mathbf{p}^* \in PV^{-1}(\mathbf{q}^*)$. Теорема 2 доказана.

ЛИТЕРАТУРА

- **1. Алипрантис К., Браун Д., Беркеншо О.** Существование и оптимальность конкурентного равновесия. М: Мир, 1995. 384 с.
- **2. Гильденбрандт В.** Ядро и равновесие в большой экономике. М: Наука, 1986. 200 с.
- **3. Никайдо X.** Выпуклые структуры и математическая экономика. М: Мир, 1972. 517 с.
- **4.** Сидоров А. В. Существование равновесия в однопериодной модели экономики с инвестированием // Дискрет. анализ и исслед. операций. Сер. $2.-2005.-\mathrm{T}.$ 12, № $1.-\mathrm{C}.$ 74–96.
- **5.** Четыркин Е. М. Финансовая математика. М: Дело, 2003. 400 с.

Сидоров Александр Васильевич, e-mail: sidorov@math.nsc.ru

Статья поступила 7 апреля 2008 г. Переработанный вариант— 21 июля 2008 г.