АЦИКЛИЧЕСКАЯ ПРЕДПИСАННАЯ 3-РАСКРАШИВАЕМОСТЬ ПЛОСКИХ ГРАФОВ БЕЗ ЦИКЛОВ ДЛИНЫ ОТ 4 ДО 12 *)

О.В. Бородин

Аннотация. Известно, что всякий плоский граф предписанно ациклически 7-раскрашиваем, и предполагается, что он предписанно ациклически 5-раскрашиваем (О.В. Бородин и др., 2002). Это предположение является совместным обобщением теорем Бородина об ациклической 5-раскраске (1979) и Томассена о предписанной 5-раскраске (1994). Однако до сих пор оно подтверждено лишь для некоторых узких классов плоских графов. Получен ряд достаточных условий ациклической 4- и 3-раскрашиваемости. В частности, плоские графы обхвата не менее 7 ациклически 3-раскрашиваемы (О.В. Бородин, А.В. Косточка и Вудал, 1999) и предписанно ациклически 3-раскрашиваемы (О.В. Бородин, А.В. Косточка и Вудал, 1909).

Естественной мерой разреженности плоского графа, введённой Эрдёшем и Стейнбергом, является отсутствие k-циклов, $4 \leqslant k \leqslant S$. В работе доказано, что каждый плоский граф без циклов длины от 4 до 12 предписанно ациклически 3-раскрашиваем.

Ключевые слова: плоский граф, ациклическая раскраска, предписанная ациклическая раскраска.

Введение

Обозначим через V(G) и E(G) множества вершин и рёбер графа G, а обхват графа G, т. е. длину минимального цикла в G, — через g(G).

Отображение $f:V(G)\longrightarrow \{1,2,\ldots,k\}$ такое, что $f(x)\neq f(y)$, если вершины x и y смежны, называется npaвильной k-раскраской графа G.

По теореме Грёцша [7] каждый плоский граф без треугольников 3-раскрашиваем. В 1976 г. Стейнберг предположил, что каждый плоский граф без 4- и 5-циклов является 3-раскрашиваемым. Эта гипотеза остаётся неподтверждённой. Эрдёш предложил следующее ослабление

 $^{^{*)}}$ Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований (проекты 09–01–00244 и 08–01–00673).

^{© 2009} Бородин О.В.

гипотезы Стейнберга [14]: существует ли такая константа C, что отсутствие циклов длины от 4 до C в плоском графе гарантирует его 3-раскрашиваемость? Наилучший результат в этом направлении, $C \leq 7$, получен О. В. Бородиным и др. [5].

Пусть теперь у каждой вершины v графа G имеется список L(v) допустимых цветов, представленных целыми положительными числами. Говорят, что предписание L хроматично, если существует правильная вершинная раскраска G такая, что цвет каждой вершины v принадлежит L(v). Граф G называется npednucahho k-packpawuваемым, еслилюбое предписание L на G, обладающее свойством $|L(v)| \ge k$ для всех $v \in V(G)$, является хроматичным.

Томассен [15] доказал знаменитую теорему о том, что любой плоский граф предписанно 5-раскрашиваем, а Фогт [17] показала, что эта граница неулучшаема (что контрастирует с теоремой Аппеля и Хакена о 4 красках). Кроме того, Фогт [18] построила плоский граф без треугольников, который не является предписанно 3-раскрашиваемым (этот факт контрастирует с теоремой Грёцша). Известно также, что плоский граф предписанно 3-раскрашиваем, если его обхват не меньше 5 (Томассен [16]) или если в нём нет циклов длины от 4 до 9 (О.В. Бородин [2]).

Правильная вершинная раскраска графа называется ациклической, если на любом цикле встречается не менее трёх цветов (Грюнбаум [8]). О. В. Бородин [1] доказал гипотезу Грюнбаума об ациклической 5-раскрашиваемости плоских графов. Эта граница неулучшаема, и, более того, существуют даже двудольные 2-вырожденные плоские графы, не являющиеся ациклически 4-раскрашиваемыми (А. В. Косточка, Л. С. Мельников [11]). Отметим, что ациклическая раскраска оказалась полезной при получении результатов для других типов раскрасок [9, 10].

О. В. Бородин и др. [4] доказали, что каждый плоский граф ациклически предписанно 7-раскрашиваем, и предположили, что имеет место совместное обобщение результатов О.В.Бородина [1] и Томассена [15].

Гипотеза 1. Каждый плоский граф ациклически предписанно 5-раскрашиваем.

Однако эта гипотеза очень трудна; пока её удалось подтвердить только для некоторых узких классов плоских графов. Были также получены достаточные условия ациклической 4- и 3-раскрашиваемости плоских графов (как обычной, так и предписанной). Минимальное k, при котором G является ациклически k-раскрашиваемым (предписанно ациклически k-раскрашиваемым), обозначим через a(G) ($a^l(G)$).

О. В. Бородин, А. В. Косточка и Вудал [3] показали, что если G —

плоский граф обхвата g, то $a(G) \leqslant 4$ при $g \geqslant 5$ и $a(G) \leqslant 3$ при $g \geqslant 7$. Монтасьер, Ошам и Распо [13] показали, что $a^l(G) \leqslant 4$ при $g \geqslant 6$ и $a^l(G) \leqslant 3$ при $g \geqslant 8$, что было улучшено до $a^l(G) \leqslant 4$ при $g \geqslant 5$ Монтасьером [13] и до $a^l(G) \leqslant 3$ при $g \geqslant 7$ О. В. Бородиным и др. [6].

Результатом данной работы является

Теорема 1. Каждый плоский граф без циклов длины от 4 до 12 предписанно ациклически 3-раскрашиваем.

1. Доказательство теоремы 1

Предположим, граф G с предписанием L — наименьший по числу вершин контрпример к теореме 1. Очевидно, что G связен и не содержит 1-вершин. Через F(G), d(v) и r(f) обозначим множество граней G, степень вершины v и ранг грани f соответственно.

Из формулы Эйлера |V(G)|-|E(G)|+|F(G)|=2, используя известные равенства

$$\sum_{v\in V(G)}d(v)=2|E(G)|=\sum_{f\in F(G)}r(f),$$

имеем:

$$\sum_{v \in V(G)} \left(\frac{11d(v)}{2} - 13 \right) + \sum_{f \in F(G)} (r(f) - 13) < 0.$$
 (1)

Пусть начальные заряды каждой вершины $v \in V(G)$ и грани $f \in F(G)$ равны $\mathrm{ch}(v) = 11d(v)/2 - 13$ и $\mathrm{ch}(f) = r(f) - 13$ соответственно. Заметим, что только 2-вершины и 3-грани имеют отрицательные начальные заряды. Сначала мы дадим правила перераспределения зарядов, приводящие к финальному заряду ch^* такому, что

$$\sum_{x \in V(G) \cup F(G)} \operatorname{ch}(x) = \sum_{x \in V(G) \cup F(G)} \operatorname{ch}^*(x) < 0.$$

Затем, основываясь на структурных свойствах графа G, мы получим противоречие, доказав, что $\mathrm{ch}^*(x) \geqslant 0$ для каждого $x \in V(G) \cup F(G)$.

1.1. Структурные свойства минимального контрпримера

Лемма 1. B G нет 2-вершины v, принадлежащей 3-циклу.

ДОКАЗАТЕЛЬСТВО. Достаточно ациклически раскрасить граф $G \setminus \{v\}$ в соответствии с предписанием L, а затем покрасить v отлично от её соседей. Лемма 1 доказана.

Лемма 2. B G нет двух смежных 2-вершин.

Лемма 3. В G нет 3-грани, содержащей две 3-вершины, смежные c2-вершинами.

ДОКАЗАТЕЛЬСТВО. Предположим, 3-грань xyz имеет d(x) = d(z) =3, где x и z смежны с 2-вершинами x' и z' соответственно. Заметим, что $x' \neq z'$ по лемме 1. Через x'' и z'' обозначим соседей x' и z', отличных от x и z соответственно.

Пусть c — ациклическая L-раскраска графа $G \setminus \{x'\}$, и пусть L(x') = $\{1,2,3\}$. Доказательство сразу завершается, если $c(x'') \neq c(x)$, поэтому предположим, что c(x'') = c(x) = 1 и существуют двухцветные (1,2)- или (1,3)-циклы в G, если положить $c^*(x') = 2$ или $c^*(x') = 3$ соответственно.

Учитывая симметрию, можно считать, что c(y) = 2, c(z) = c(z'') = 3и c(z') = 1. Если $L(x) \neq \{1,2,3\}$ или $L(z) \neq \{1,2,3\}$, то достаточно положить $c^*(x) \ge 4$ или $c^*(z) \ge 4$ соответственно, причём во втором случае для x' годится только цвет 3. Если же, напротив, L(x) = L(z) = $\{1,2,3\}$, то полагаем $c^*(x)=3$, $c^*(z)=1$ и $c^*(x')=c^*(z')=2$.

Построенная раскраска c^* графа G — искомая. Лемма 3 доказана.

Назовём триплетом 3-грань, инцидентную трём 3-вершинам. Из леммы 3 вытекает

Следствие 1. В G нет триплета, содержащего две 3-вершины, смежные с 2-вершинами.

Триплет назовём плохим, если одна из его вершин смежна с 2-вершиной.

Лемма 4. B G нет двух плохих триплетов, соединённых ребром.

Доказательство. Предположим, что триплеты $x_1y_1z_1$ и $x_2y_2z_2$ соединены ребром z_1x_2 , а x_1' и z_2' — 2-вершины, смежные с x_1 и z_2 соответственно. Через x_1'', z_2'', y_1' и y_2' обозначим остальных соседей x_1', z_2', y_1 и y_2 соответственно.

Пусть c — ациклическая L-раскраска графа $G \setminus \{x_1'\}$. Основываясь на свойствах частичной раскраски c и предписания L, мы в каждом из возникающих вариантов построим ациклическую L-раскраску графа G, подправляя c.

ШАГ 1. Пусть $L(x_1') = \{1, 2, 3\}$. Как и в предыдущей лемме, можем считать, что $c(x_1'') = c(x_1) = c(y_1') = c(x_2) = 1$, $c(y_1) = 2$, $c(z_1) = 3$ и существуют двуцветные (1,2)- и (1,3)-циклы в G, если положить $c_1(x_1')=2$ и $c_2(x_1')=3$ соответственно.

Сначала мы пытаемся исправить одну из раскрасок c_1 и c_2 , разорвав соответствующий двуцветный цикл. А именно, если хотя бы одна из вершин x_1, y_1 и z_1 имеет допустимый для неё цвет α такой, что $\alpha \geqslant 4$, то достаточно перекрасить эту вершину в α . Точнее говоря, если можно перекрасить вершину x_1 , то любая из раскрасок c_1 и c_2 превращается в искомую раскраску графа G. Если же есть возможность перекрасить в α вершину y_1 , то в качестве исходной можно взять раскраску c_1 . Наконец, если $\alpha \in L(z_1)$, то подправляем раскраску c_2 . Итак, будем далее считать, что $L(x_1) = L(y_1) = L(z_1) = \{1, 2, 3\}$.

ШАГ 2. Проследим за (1,3)-циклом в раскраске c_2 . Мы знаем, что $c(x_2)=1$, но далее он проходит либо через y_2 , либо через z_2 . Рассмотрим ещё раскраску c_3 графа G, получаемую из c_1 так: $c_3(y_1)=3$, а $c_3(z_1)=2$. В этой раскраске должен существовать (1,2)-цикл, проходящий через x_2 , так как иначе уже нечего доказывать.

Таким образом, вершина x_1'' соединена с x_2 в $G-\{x_1,y_1,z_1\}$ при раскраске c как (1,3)-, так и (1,2)-цепью. Отсюда следует, что $\{c(y_2),c(z_2)\}=\{2,3\},\ c(y_2')=c(z_2')=1,\ a\ c(z_2'')=c(z_2).$

Более того, $L(x_2)=L(y_2)=L(z_2)=\{1,2,3\}$, иначе перекрашиванием соответствующей вершины можно разорвать (1,3)-цикл в раскраске c_2 или (1,2)-цикл в раскраске c_3 (как на шаге 1). При этом если перекрашивалась z_2 , то цвета соседних с z_2' вершин станут разными, поэтому проблем с вершиной z_2' не возникает.

Случай 1. $c(z_2)=3$. Рассмотрим раскраску c_4 графа G, получаемую из c_2 следующим образом: $c_4(x_1')=2$, $c_4(x_1)=3$, $c_4(z_1)=1$, $c_4(x_2)=3$, $c_4(z_2)=1$, а $c_4(z_2')\in L(z_2')\setminus\{1,3\}$. Нетрудно видеть, что раскраска c_4 — искомая.

Случай 2. $c(z_2)=2$. Теперь рассмотрим раскраску c_5 графа G, получаемую из c_3 так: $c_5(x_1')=3$, $c_5(x_1)=2$, $c_5(z_1)=1$, $c_5(x_2)=2$, $c_5(z_2)=1$, а $c_5(z_2')\in L(z_2')\setminus\{1,2\}$. Раскраска c_5 также является ациклической L-раскраской графа G.

В заключение отметим, что вершина x_2 на шаге 2 находится в той же ситуации, что и x_1 на шаге 1: при двух «почти пригодных» раскрасках графа G существуют двуцветные (1,2)- и (1,3)-циклы, проходящие через рёбра x_2y_2 и x_2z_2 , т. е. цвета 2 и 3 с точки зрения вершины x_2 равноправны. Поэтому мы могли бы в конце доказательства сразу предположить, что $c(y_2)=2,\ c(z_2)=3,\$ а не рассматривать два симметричных случая. Лемма 4 доказана.

Лемма 5. B G нет триплета, смежного c двумя плохими триплетами. Доказательство. В цепочке триплетов имеется единственный путь $P = x_1'x_1 \dots z_3z_3'$, соединяющий 2-вершины x_1' и x_3' , и мы последовательно вынуждаем нежелательный двуцветный цикл пройти именно по P, а в

конце делаем сдвиг раскраски вдоль всего Р. Годятся те же рассуждения, что и в доказательстве леммы 4, с тем только отличием, что шаг 2 применяется дважды, причём в первый раз не делается сдвига, описанного в случаях 1 и 2. Подробности мы оставляем заинтересованному читателю в качестве упражнения. Лемма 5 доказана.

- 1.2. Завершение доказательства теоремы 1. Перераспределим заряды вершин и граней по следующим правилам.
- R1. Каждая 2-вершина получает заряд 1 от каждой смежной вершины степени не менее 3.
- R2. Каждая 3-грань f получает от каждой инцидентной вершины vследующий заряд:
 - (i) 5/2, если d(v) = 3 и v смежна с 2-вершиной;
 - (ii) 3, если d(v) = 3 и v смежна с плохим триплетом;
- (iii) 7/2, если d(v) = 3 и v не смежна ни с плохим триплетом, ни с 2-вершиной;
 - (iv) 9/2, если $d(v) \ge 4$.
- R3. Каждый плохой триплет получает 1/2 от каждой смежной вершины степени не менее 3.

Отметим, что правило R3 корректно благодаря лемме 4.

Проверим теперь, что $\operatorname{ch}^*(x) \geqslant 0$ для всех $x \in V(G) \cup F(G)$.

Случай 1. $f \in F(G)$. Если $r(f) \geqslant 13$, то

$$ch^*(f) = ch(f) = r(f) - 13 \ge 0.$$

Предположим, r(f) = 3, и напомним, что f получает не менее 5/2 от инцидентных вершин по R2 самое большее один раз согласно лемме 3.

Если f инцидентна вершине степени не менее 4, то

$$\operatorname{ch}^*(f) \ge r(f) - 13 + \frac{9}{2} + 3 + \frac{5}{2} = 0$$

по R2, R3 и леммам 3–5. Предположим, что f — триплет. Если f — не плохой, то

$$\operatorname{ch}^*(f) \geqslant -10 + 2 \times \frac{7}{2} + 3 = 0$$

ввиду леммы 5. Наконец, если f — плохой триплет, то

$$\operatorname{ch}^*(f) \geqslant -10 + 2 \times \frac{7}{2} + \frac{5}{2} + 2 \times \frac{1}{2} > 0$$

по R2 и R3 ввиду лемм 3 и 4.

Случай 2. $v \in V(G)$. Если d(v)=2, то $\mathrm{ch}^*(v)=-2+2\times 1=0$ по R1 и лемме 2. Допустим, что d(v)=3; тогда $\mathrm{ch}(v)=7/2$. Согласно правилам R2(i)–(iii), R1 и R3 имеем $\mathrm{ch}^*(v)=0$, если v инцидентна 3-грани, в противном случае

$$\operatorname{ch}^*(v) \geqslant \frac{7}{2} - 3 \times 1 > 0.$$

Наконец, предположим, что $d(v) = d \geqslant 4$; тогда $\mathrm{ch}(v) = 11d/2 - 13 \geqslant$ 9. Пусть t — число 3-граней, инцидентных v. Отметим, что поскольку в G нет 4-циклов, то $t \leqslant \lfloor d/2 \rfloor$. Отсюда по R1 и R2(iv) имеем

$$\operatorname{ch}^*(v) \ge \frac{11d}{2} - 13 - \frac{9t}{2} - (d - 2t) \times 1 = \frac{9d}{2} - 13 - \frac{5t}{2} \ge \frac{9d}{2} - 13 - \frac{5d}{4}$$
$$= \frac{13d}{4} - 13 \ge 0.$$

Итак, после перераспределения зарядов согласно правилам R1–R3 заряды каждой вершины и грани графа G неотрицательны, что противоречит (1). Теорема 1 доказана.

Автор благодарит университет Бордо-1 за приглашение на первую половину 2009 г. и лично Андре Распо за гостеприимство, а рецензента — за полезные замечания.

ЛИТЕРАТУРА

- 1. Borodin O. V. On acyclic colorings of planar graphs // Discrete Math.—1979. Vol. 25. P. 211–236.
- **2.** Borodin O. V. Structural properties of plane graphs without adjacent triangles and an application to 3-colorings // J. Graph Theory. 1996. Vol. 21, N 2. P. 183–186.
- 3. Borodin O. V., Kostochka A. V., Woodall D. R. Acyclic colorings of planar graphs with large girth // J. London Math. Soc. 1999. Vol. 60. P. 344–352.
- 4. Borodin O. V., Fon-Der-Flaass D. G., Kostochka A. V., Raspaud A., Sopena E. Acyclic list 7-coloring of planar graphs // J. Graph Theory. 2002. Vol. 40. P. 83–90.
- **5.** Borodin O. V., Glebov A. N., Raspaud A., Salavatipour M. R. Planar graphs without cycles of length from 4 to 7 are 3-colorable // J. Combin. Theory. Ser. B. -2005. Vol. 93. P. 303–311.
- 6. Borodin O. V., Chen M., Ivanova A. O., Raspaud A. Acyclic 3-choosability of sparse graphs with girth at least 7. (в печати).
- 7. Grötzsch H. Ein Dreifarbenzatz für dreikreisfreie Netze auf der Kugel // Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. 1959. Reihe 8. S. 109–120.

- 8. Grünbaum B. Acyclic colorings of planar graphs // Israel J. Math. 1973. — Vol. 14, N 3. — P. 390–408.
- 9. Hell P., Nešetřil J. Graphs and homomorphisms // Oxford Lect. Series in Mathematics and its Applications. — Vol. 28. — Oxford: Oxford Univ. Press, 2004. - xii + 244 p.
- 10. Jensen T. R., Toft B. Graph coloring problems. New York: A Wiley-Interscience Publ. John Wiley& Sons, Inc., 1995. — xxii+295 p.
- 11. Kostochka A. V., Mel'nikov L. S. Note to the paper of Grünbaum on acyclic colorings // Discrete Math. — 1976. — Vol. 14. — P. 403–406.
- 12. Montassier M. Acyclic 4-choosability of planar graphs with girth at least 5 // Graph Theory Trends in Mathematics. — Basel: Birkhauser, 2006. – P. 299-310.
- 13. Montassier M., Ochem P., Raspaud A. On the acyclic choosability of graphs // J. Graph Theory. — 2006. — Vol. 51. — P. 281-300.
- 14. Steinberg R. The state of the three color problem // Ann. Discrete Math. 1993. — Vol. 55. — P. 211–248.
- 15. Thomassen C. Every planar graph is 5-choosable // J. Combin. Theory. Ser. B. -1994. - Vol. 62. - P. 180-181.
- **16.** Thomassen C. 3-List-coloring planar graphs of girth 5 // J. Combin. Theory. Ser. B. -1995. - Vol. 64. - P. 101-107.
- 17. Voigt M. List colorings of planar graph // Discrete Math. 1993. Vol. 120. — P. 215–219.
- 18. Voigt M. A not 3-choosable planar graph without 3-cycles // Discrete Math. - 1995. - Vol. 146. - P. 325-328.

Бородин Олег Вениаминович, e-mail: brdnoleg@math.nsc.ru

Статья поступила 13 мая 2009 г. Переработанный вариант — 17 июня 2009 г.